精英家教网 > 高中数学 > 题目详情
3.一个圆经过椭圆$\frac{x^2}{9}+\frac{y^2}{3}=1$的三个顶点,且圆心在x轴上,则该圆的方程为(x±1)2+y2=4.

分析 由椭圆$\frac{x^2}{9}+\frac{y^2}{3}=1$,可得顶点(±3,0),$(0,±\sqrt{3})$.设要求的圆的标准方程为:(x+t)2+y2=r2,把(3,0),$(0,±\sqrt{3})$,代入可得:(3+t)2=r2,t2+3=r2,解得t,r.可得圆的方程.同理把:(-3,0),$(0,±\sqrt{3})$,代入可得:圆的方程.

解答 解:由椭圆$\frac{x^2}{9}+\frac{y^2}{3}=1$,可得顶点(±3,0),$(0,±\sqrt{3})$.
设要求的圆的标准方程为:(x+t)2+y2=r2
把(3,0),$(0,±\sqrt{3})$,代入可得:(3+t)2=r2,t2+3=r2,解得t=-1,r=2.可得圆的方程为:(x-1)2+y2=4.
同理把:(-3,0),$(0,±\sqrt{3})$,代入可得:圆的方程为:(x+1)2+y2=4.
故答案为:(x±1)2+y2=4.

点评 本题考查了椭圆与圆的标准方程及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.第26届世界大学生夏季运动会将于2011年8月12日到23日在深圳举行,为工作需要,组委会拟定组建一个“五人接待小组”,先在各中学进行海选,招募了12名男生和18名女生志愿者,将这30名志愿者的身高编成如图所示的茎叶图(单位:cm).若身高
在175cm以上(含175cm)定义为“高个子”,身高在175cm以下(不含175cm)定义为“非高个子”.
(1)从这30名志愿者选出5人,且5人中有“女高个子”,则有多少种不同的选法?
(2)若用分层抽样的方法从“高个子”和“非高个子”中共提取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知直线l的参数方程为$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),曲线C的极坐标方程为ρ=$2\sqrt{2}sin(θ+\frac{π}{4})$,直线l与曲线C交于A、B两点,并与y轴交于点P.
(Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ)求$\frac{1}{|PA|}+\frac{1}{|PB|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.用正奇数按如表排列
第1列第2列第3列第4列第5列
第一行1357
第二行1513119
第三行17192123
2725
则2017在第     行第      列.(  )
A.第253行第1列B.第253行第2列C.第252行第3列D.第254行第2列

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=(x-1)2+a(lnx-x+1)(其中a∈R,且a为常数)
(Ⅰ)当a=4时,求函数y=f(x)的单调区间;
(Ⅱ)若对于任意的x∈(1,+∞),都有f(x)>0成立,求a的取值范围;
(Ⅲ)若方程f(x)+a+1=0在x∈(1,2)上有且只有一个实根,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知抛物线C:y2=2px(p>0),焦点F($\frac{p}{2}$,0),如果存在过点M(x0,0)$({x_0}>\frac{p}{2})$的直线l与抛物线C交于不同的两点A、B,使得S△AOM=λ•S△FAB,则称点M为抛物线C的“λ分点”.
(1)如果M(p,0),直线l:x=p,求λ的值;
(2)如果M(p,0)为抛物线C的“$\frac{4}{3}$分点”,求直线l的方程;
(3)(普通中学做)命题甲:证明点M(p,0)不是抛物线C的“2分点”;
(重点中学做)命题乙:如果M(x0,0)$({x_0}>\frac{p}{2})$是抛物线的“2分点”,求x0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)(x∈R)满足f(1)=2,且f(x)的导函数f′(x)<$\frac{2}{3}$,则f(x)<$\frac{2x}{3}$+$\frac{4}{3}$的解集为(  )
A.(1,+∞)B.(-1,∞)∪(2,+∞)C.(-∞,2)D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.椭圆的两焦点分别为F1(-4,0),F2(4,0),过F1作弦AB,且△ABF2的周长为20,则此椭圆的方程为$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x3+3|x-a|(a>0).
(1)当a=1时,曲线y=f(x)上P点处的切线与直线x-3y-2=0垂直,求P点的坐标;
(2)求函数f(x)的单调区间.

查看答案和解析>>

同步练习册答案