分析 由题意可设椭圆的标准方程为:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1,(a>b>0).根据过F1作弦AB,且△ABF2的周长为20,则4a=20,解得a,又c=4,则$b=\sqrt{{a}^{2}-{c}^{2}}$,即可得出.
解答 解:由题意可设椭圆的标准方程为:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1,(a>b>0).
∵过F1作弦AB,且△ABF2的周长为20,则4a=20,解得a=5,
又c=4,则$b=\sqrt{{a}^{2}-{c}^{2}}$=3.
∴椭圆的标准方程为:$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}$=1.
故答案为:$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}$=1.
点评 本题考查了椭圆的定义标准方程及其性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{8}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 654 | B. | 656 | C. | 658 | D. | 660 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①③ | B. | ②③ | C. | ①②④ | D. | ②④ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com