分析 (1)利用三角函数的恒等变换化简函数f(x)的解析式,根据最小正周期求出ω,再根据最大值求出b的值.
(2)根据x的范围确定函数值域.
解答 解:(1)f(x)=2sinωx•cosωx+2bcos2ωx-b=$\sqrt{1+{b}^{2}}$sin(2ωx+φ)(其中tanφ=b),
由题意可得,函数f(x)的周期 T=2×$\frac{π}{2}$=π,
再由函数的解析式可得周期T=$\frac{2π}{2ω}$=π,所以ω=1.
再由函数的最大值为$\sqrt{1+{b}^{2}}$=2,可得 b=±$\sqrt{3}$,
因为b>0,所以b=$\sqrt{3}$;
(2)f(x)=2sin(2x+$\frac{π}{3}$).
设2x+$\frac{π}{3}$=t,则y=2sint.
∵x∈[-$\frac{π}{3}$,$\frac{π}{6}$),
∴t∈[-$\frac{π}{3}$,$\frac{2π}{3}$),
∴y∈[-$\sqrt{3}$,2],
∴函数f(x)的值域是[-$\sqrt{3}$,2].
点评 本题主要考查三角函数的恒等变换及化简求值,由函数y=Asin(ωx+∅)的部分图象求函数的解析式,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | f(a)<0,f(b)<0 | B. | f(a)>0,f(b)>0 | C. | f(a)<0,f(b)>0 | D. | f(a)>0,f(b)<0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,+∞) | B. | (-1,∞)∪(2,+∞) | C. | (-∞,2) | D. | (-∞,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-4,4] | B. | [-2$\sqrt{2}$,2$\sqrt{2}$] | C. | (-∞,4] | D. | (-∞,2$\sqrt{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com