精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)(x∈R)满足f(1)=2,且f(x)的导函数f′(x)<$\frac{2}{3}$,则f(x)<$\frac{2x}{3}$+$\frac{4}{3}$的解集为(  )
A.(1,+∞)B.(-1,∞)∪(2,+∞)C.(-∞,2)D.(-∞,1)

分析 构造函数,g(x)=f(x)-$\frac{2}{3}$x,判断出函数的单调性,则不等式f(x)<$\frac{2x}{3}$+$\frac{4}{3}$转化为g(x)<g(1),解得即可.

解答 解:令g(x)=f(x)-$\frac{2}{3}$x,
∴g′(x)=f′(x)-$\frac{2}{3}$,
∵f(x)的导函数f′(x)<$\frac{2}{3}$,
∴g′(x)<0,
∴g(x)在R上为减函数,
又f(1)=2,
∴g(1)=f(1)-$\frac{2}{3}$=$\frac{4}{3}$,
∵f(x)<$\frac{2x}{3}$+$\frac{4}{3}$,
∴f(x)-$\frac{2x}{3}$<$\frac{4}{3}$,
∴g(x)<g(1),
∴x>1,
故选:A

点评 本题利用导数研究函数的单调性,可构造函数,考查所构造的函数的单调性是关键,也是难点所在,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.如图,已知四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为直角梯形,∠D=90°,且AB∥CD,AB=AD,∠BCD=45°.
(1)点F在线段PC上何位置时,BF∥平面PAD?并证明你的结论.
(2)当直线PB与平面ABCD所成的角为45°时,求二面角B-PC-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设P是椭圆$\frac{{x}^{2}}{169}$+$\frac{{y}^{2}}{25}$=1上一点,F1、F2是椭圆的焦点,若|PF1|等于6,则|PF2|等于(  )
A.13B.21C.18D.20

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.一个圆经过椭圆$\frac{x^2}{9}+\frac{y^2}{3}=1$的三个顶点,且圆心在x轴上,则该圆的方程为(x±1)2+y2=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=-x3+3x+m恰有两个零点,则实数m=(  )
A.-2或2B.-1或1C.-1或-2D.1或2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.将正偶数按下边规律排列,第19行,从左到右,第6个数是(  )
2
4 6 8
10 12 14 16 18
20 22 24 26 28 30 32
A.654B.656C.658D.660

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=2sinωx•cosωx+2bcos2ωx-b(其中b>0,ω>0)的最大值为2,直线x=x1、x=x2是y=f(x)图象的任意两条对称轴,且|x1-x2|的最小值为$\frac{π}{2}$.
(1)求b,ω的值;
(2)若x∈[-$\frac{π}{3}$,$\frac{π}{6}$),求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=$\left\{\begin{array}{l}{|{x}^{2}+4x+3|,x≤0}\\{2|x-1|,x>0}\end{array}\right.$,若函数y=f(x)-a恰有3个零点,则实数a的取值范围是a=0或2≤a≤3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=alnx-x(a∈R).
(Ⅰ)若直线y=2x+b是函数f(x)在点(1,f(1))处的切线,求实数a,b的值;
(Ⅱ)若对任意的x∈(0,+∞),都有f(x)≤0成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案