精英家教网 > 高中数学 > 题目详情
2.如图给出一个“三角形数阵”,已知每一列的数成等差数列,从第三行起,每一行的数成等比数列,每一行的公比都相等,记第i行第j列的数为${a_{ij}}(i≥j,i,j∈{N^*})$,则a63=(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.1

分析 先确定ai1,再求出aij=$\frac{i}{3}$×($\frac{1}{2}$)j-1,即可得到结论.

解答 解:由题意,每一列的数成等差数列,首项$\frac{1}{3}$,公差为$\frac{1}{3}$
∴ai1=$\frac{1}{3}$+(i-1)•$\frac{1}{3}$=$\frac{i}{3}$,
每一行的数成等比数列,公比为$\frac{1}{2}$,
∴aij=ai1×($\frac{1}{2}$)j-1=$\frac{i}{3}$×($\frac{1}{2}$)j-1
∴a63=2×($\frac{1}{2}$)2=$\frac{1}{2}$.
故选C.

点评 本题考查等差数列和等比数列的性质,考查了考生分析问题和解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=ax3-1,若f(2016)=5,则f(-2016)=-7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.第26届世界大学生夏季运动会将于2011年8月12日到23日在深圳举行,为工作需要,组委会拟定组建一个“五人接待小组”,先在各中学进行海选,招募了12名男生和18名女生志愿者,将这30名志愿者的身高编成如图所示的茎叶图(单位:cm).若身高
在175cm以上(含175cm)定义为“高个子”,身高在175cm以下(不含175cm)定义为“非高个子”.
(1)从这30名志愿者选出5人,且5人中有“女高个子”,则有多少种不同的选法?
(2)若用分层抽样的方法从“高个子”和“非高个子”中共提取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.解不等式:
(1)|1-$\frac{2x-1}{3}$|≤2
(2)(2-x)(x+3)<2-x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知x0(x0>1)是函数f(x)=lnx-$\frac{1}{x-1}$的一个零点,若a∈(1,x0),b∈(x0,+∞),则(  )
A.f(a)<0,f(b)<0B.f(a)>0,f(b)>0C.f(a)<0,f(b)>0D.f(a)>0,f(b)<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x(lnx-ax).
(1)a=$\frac{1}{2}$时,求f(x)在点(1,f(1))处的切线方程;
(2)若f(x)存在两个不同的极值x1,x2,求a的取值范围;
(3)在(2)的条件下,求f(x)在(0,a]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知直线l的参数方程为$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),曲线C的极坐标方程为ρ=$2\sqrt{2}sin(θ+\frac{π}{4})$,直线l与曲线C交于A、B两点,并与y轴交于点P.
(Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ)求$\frac{1}{|PA|}+\frac{1}{|PB|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.用正奇数按如表排列
第1列第2列第3列第4列第5列
第一行1357
第二行1513119
第三行17192123
2725
则2017在第     行第      列.(  )
A.第253行第1列B.第253行第2列C.第252行第3列D.第254行第2列

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.椭圆的两焦点分别为F1(-4,0),F2(4,0),过F1作弦AB,且△ABF2的周长为20,则此椭圆的方程为$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}$=1.

查看答案和解析>>

同步练习册答案