【题目】随着电子产品的不断更新完善,更多的电子产品逐步走入大家的世界,给大家带来了丰富多彩的生活,但也带来了一些负面的影响,某公司随即抽取人对某电子产品是否对日常生活有益进行了问卷调查,并对参与调查的人中的年龄层次以及意见进行了分类,得到的数据如下表所示:
岁以下 | 岁或岁以上 | 总计 | |
认为某电子产品对生活有益 | |||
认为某电子产品对生活无益 | |||
总计 |
(1)根据表中的数据,能否在犯错误的概率不超过的前提下,认为电子产品的态度与年龄有关系?
(2)为了答谢参与问卷调查的人员,该公司对参与本次问卷调查的人员进行抽奖活动,奖金额以及发放的概率如下:
奖金额 | 元(谢谢支持) | 元 | 元 |
概率 |
现在甲、乙两人参与了抽奖活动,记两人获得的奖金总金额为,求的分布列和数学期望.
参与公式:
临界值表:
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A. 若命题都是真命题,则命题“”为真命题
B. 命题“”的否定是“,”
C. 命题:“若,则或”的否命题为“若,则或”
D. “”是“”的必要不充分条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(1)令,试讨论的单调性;
(2)若对恒成立,求的取值范围.
【答案】(1)见解析(2)
【解析】试题分析:(1)由,对函数求导,研究导函数的正负得到单调性即可;(2)由条件可知对恒成立,变量分离,令,求这个函数的最值即可.
解析:
(1)由得
当时, 恒成立,则单调递减;
当时, ,令,
令.
综上:当时, 单调递减,无增区间;
当时, ,
(2)由条件可知对恒成立,则
当时, 对恒成立
当时,由得.令则
,因为,所以,即
所以,从而可知.
综上所述: 所求.
点睛:导数问题经常会遇见恒成立的问题:
(1)根据参变分离,转化为不含参数的函数的最值问题;
(2)若 就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为 ,若恒成立;
(3)若 恒成立,可转化为(需在同一处取得最值) .
【题型】解答题
【结束】
22
【题目】在平面直角坐标系中,曲线的参数方程为 (为参数),以为极点, 轴的非负半轴为极轴的极坐标系中,直线的极坐标方程为.
(1)求曲线的极坐标方程;
(2)设直线与曲线相交于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥PABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.
(1)求证:BD⊥平面PAC;
(2)若PA=4,求平面PBC与平面PDC所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体ABCD﹣A1B1C1D1中,E是AB的中点,F在CC1上,且CF=2FC1,点P是侧面AA1D1D(包括边界)上一动点,且PB1∥平面DEF,则tan∠ABP的取值范围为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是一个以A1B1C1为底面的直三棱柱被一平面所截得到的几何体,截面为ABC,已知A1B1=B1C1=2,∠A1B1C1=90°,AA1=4,BB1=3,CC1=2,求:
(1)该几何体的体积.
(2)截面ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数, ,在处的切线方程为.
(1)求, ;
(2)若,证明: .
【答案】(1), ;(2)见解析
【解析】试题分析:(1)求出函数的导数,得到关于 的方程组,解出即可;
(2)由(1)可知, ,
由,可得,令, 利用导数研究其单调性可得
,
从而证明.
试题解析:((1)由题意,所以,
又,所以,
若,则,与矛盾,故, .
(2)由(1)可知, ,
由,可得,
令,
,
令
当时, , 单调递减,且;
当时, , 单调递增;且,
所以在上当单调递减,在上单调递增,且,
故,
故.
【点睛】本题考查利用函数的切线求参数的方法,以及利用导数证明不等式的方法,解题时要认真审题,注意导数性质的合理运用.
【题型】解答题
【结束】
22
【题目】在平面直角坐标系中,曲线的参数方程为(, 为参数),以坐标原点为极点, 轴正半轴为极轴建立极坐标系,直线的极坐标方程为,若直线与曲线相切;
(1)求曲线的极坐标方程;
(2)在曲线上取两点, 与原点构成,且满足,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数。
(1)若f(x)的图象与g(x)的图象所在两条曲线的一个公共点在y轴上,且在该点处两条曲线的切线互相垂直,求b和c的值。
(2)若a=c=1,b=0,试比较f(x)与g(x)的大小,并说明理由;
(3)若b=c=0,证明:对任意给定的正数a,总存在正数m,使得当x时,
恒有f(x)>g(x)成立。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com