精英家教网 > 高中数学 > 题目详情

【题目】如图,在正方体ABCDA1B1C1D1中,EAB的中点,FCC1上,且CF2FC1,点P是侧面AA1D1D(包括边界)上一动点,且PB1∥平面DEF,则tanABP的取值范围为_____

【答案】[]

【解析】

作出平面MNQB1∥平面DEF,推导出P的轨迹是线段QNPQ处,tanABP取最小值,PN处,tanABP取最大值,由此能求出tanABP的取值范围.

解:如下图所示,上取一点,使得,

上取中点,连,与交于

,所以

中点,连,因为

所以中位线,

在正方体中,中点,

,同理可证

平面MNQB1平面DEF

PB1∥平面DEF,∴P的轨迹是线段QN

设正方体棱长为

PQ处,tanABP取最小值tan

PN处,tanABP取最大值tanABP

tanABP的取值范围为[]

故答案为:[]

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中, 是坐标原点,设函数的图象为直线,且轴、轴分别交于两点,给出下列四个命题:

存在正实数,使的面积为的直线仅有一条;

存在正实数,使的面积为的直线仅有二条;

存在正实数,使的面积为的直线仅有三条;

存在正实数,使的面积为的直线仅有四条.

其中,所有真命题的序号是( ).

A. ①②③ B. ③④ C. ②④ D. ②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确的是( )

A.若正数是等差数列,则是等比数列

B.若正数是等比数列,则是等差数列

C.若正数是等差数列,则是等比数列

D.若正数是等比数列,则是等差数列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象过原点,且在处取得极值,直线与曲线在原点处的切线互相垂直.

求函数的解析式;

若对任意实数的,恒有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着电子产品的不断更新完善,更多的电子产品逐步走入大家的世界,给大家带来了丰富多彩的生活,但也带来了一些负面的影响,某公司随即抽取人对某电子产品是否对日常生活有益进行了问卷调查,并对参与调查的人中的年龄层次以及意见进行了分类,得到的数据如下表所示:

岁以下

岁或岁以上

总计

认为某电子产品对生活有益

认为某电子产品对生活无益

总计

(1)根据表中的数据,能否在犯错误的概率不超过的前提下,认为电子产品的态度与年龄有关系?

(2)为了答谢参与问卷调查的人员,该公司对参与本次问卷调查的人员进行抽奖活动,奖金额以及发放的概率如下:

奖金额

元(谢谢支持)

概率

现在甲、乙两人参与了抽奖活动,记两人获得的奖金总金额为,求的分布列和数学期望.

参与公式:

临界值表:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数fx=x3+k-1x2+k+5x-1

1)若k=-5,求fx)的极值;

2)若fx)在区间(03)内单调,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】图1和图2中所有的正方形都全等,图1中的正方形放在图2中的①②③④某一位置,所组成的图形能围成正方体的概率是( )

A. B. C. D. 1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种大型医疗检查机器生产商,对一次性购买2台机器的客户,推出两种超过质保期后两年内的延保维修优惠方案:方案一:交纳延保金7000元,在延保的两年内可免费维修2次,超过2次每次收取维修费2000元;方案二:交纳延保金10000元,在延保的两年内可免费维修4次,超过4次每次收取维修费1000元.某医院准备一次性购买2台这种机器。现需决策在购买机器时应购买哪种延保方案,为此搜集并整理了50台这种机器超过质保期后延保两年内维修的次数,得下表:

维修次数

0

1

2

3

台数

5

10

20

15

以这50台机器维修次数的频率代替1台机器维修次数发生的概率,记X表示这2台机器超过质保期后延保的两年内共需维修的次数。

(1)求X的分布列;

(2)以所需延保金及维修费用的期望值为决策依据,医院选择哪种延保方案更合算?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,曲线由两个椭圆和椭圆组成,当成等比数列时,称曲线为“猫眼曲线”.若猫眼曲线过点,且的公比为.

(1)求猫眼曲线的方程;

(2)任作斜率为且不过原点的直线与该曲线相交,交椭圆所得弦的中点为,交椭圆所得弦的中点为,求证:为与无关的定值;

(3)若斜率为的直线为椭圆的切线,且交椭圆于点为椭圆上的任意一点(点与点不重合),求面积的最大值.

查看答案和解析>>

同步练习册答案