分析 (1)直线l的参数方程为$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t-1}\end{array}\right.$(t为参数,t∈R),消去t可得普通方程.由曲线C的极坐标方程为ρ2=$\frac{12}{4co{s}^{2}θ+3si{n}^{2}θ}$,可得:4ρ2cos2θ+3ρ2sin2θ=12,把x=ρcosθ,y=ρsinθ即可把化为直角坐标方程.
(2)设曲线C上的点P$(\sqrt{3}cosθ,2sinθ)$,利用点到直线的距离公式、和差公式、三角函数的单调性与值域即可得出.
解答 解:(1)直线l的参数方程为$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t-1}\end{array}\right.$(t为参数,t∈R),消去t可得普通方程:x-y-1=0.
由曲线C的极坐标方程为ρ2=$\frac{12}{4co{s}^{2}θ+3si{n}^{2}θ}$,
可得:4ρ2cos2θ+3ρ2sin2θ=12,化为直角坐标方程:4x2+3y2=12,即$\frac{{y}^{2}}{4}$+$\frac{{x}^{2}}{3}$=1.
(2)设曲线C上的点P$(\sqrt{3}cosθ,2sinθ)$,
则点P到直线l的距离d=$\frac{|\sqrt{3}cosθ-2sinθ-1|}{\sqrt{2}}$=$\frac{|\sqrt{7}sin(θ-φ)+1|}{\sqrt{2}}$$≤\frac{\sqrt{7}+1}{\sqrt{2}}$=$\frac{\sqrt{14}+\sqrt{2}}{2}$.
∴曲线C上的点到直线l距离的最大值为$\frac{\sqrt{14}+\sqrt{2}}{2}$.
点评 本题考查了直角坐标与极坐标的互化、点到直线的距离公式、和差公式、三角函数的单调性与值域,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3π}{5}$ | B. | $\frac{2π}{5}$ | C. | $\frac{3π}{10}$ | D. | $\frac{9π}{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 男性公务员 | 女性公务员 | 总计 | |
| 有意愿生二胎 | 30 | 15 | |
| 无意愿生二胎 | 20 | 25 | |
| 总计 |
| P(k2≥k0) | 0.050 | 0.010 | 0.001 |
| k0 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com