【题目】选修4-1:几何证明选讲
如图所示,已知AP是⊙O的切线,P为切点,AC是⊙O的割线,与⊙O交于B,C两点,圆心O在∠PAC的内部,点M是BC的中点.
(I)证明:A,P,O,M四点共圆;
(II)求∠OAM+∠APM的大小.
【答案】(Ⅰ)见解析;(Ⅱ)90°.
【解析】试题分析:(1)证明四点共圆,一般利用对角互补进行证明:根据相切及垂径定理得OP⊥AP及OM⊥BC,从而得∠OPA+∠OMA=180°. (2)根据四点共圆得同弦所对角相等:∠OAM=∠OPM,因此
∠OPM+∠APM=90°,
试题解析:(1)证明 连接OP,OM,因为AP与⊙O相切于点P,所以OP⊥AP.
因为M是⊙O的弦BC的中点,所以OM⊥BC,
于是∠OPA+∠OMA=180°.
由圆心O在∠PAC的内部,可知四边形APOM的对角互补,所以A、P、O、M四点共圆.
(2)解 由(1)得A、P、O、M四点共圆,
所以∠OAM=∠OPM,
由(1)得OP⊥AP,因为圆心O在∠PAC的内部,
所以∠OPM+∠APM=90°,
所以∠OAM+∠APM=90°.
科目:高中数学 来源: 题型:
【题目】将边长为1的正方形ABCD沿对角线AC折起,使得平面ADC⊥平面ABC,在折起后形成的三棱锥D﹣ABC中,给出下列三个命题:
①△DBC是等边三角形;
②AC⊥BD;
③三棱锥D﹣ABC的体积是 .
其中正确命题的序号是(写出所有正确命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设正项数列的前项和为,且满足, , ,各项均为正数的等比数列满足.
(Ⅰ)求数列和的通项公式;
(Ⅱ)若,数列的前项和为.若对任意, ,均有恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的前n项和为Sn , 且a3=5,S15=225.数列{bn}是等比数列,b3=a2+a3 , b2b5=128(其中n=1,2,3,…). (Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)记cn=anbn , 求数列cn前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ﹣kx且f(x)在区间(2,+∞)上为增函数.
(1)求k的取值范围;
(2)若函数f(x)与g(x)的图象有三个不同的交点,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在R上的函数f(x),g(x)满足:对于任意的x,都有f(﹣x)+f(x)=0,g(x)=g(|x|).当x<0时,f′(x)<0,g′(x)>0,则当x>0时,有( )
A.f'(x)>0,g′(x)>0
B.f′(x)<0,g′(x)<0
C.f′(x)<0,g′(x)>0
D.f′(x)>0,g′(x)<0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x)满足:在定义域D内存在实数x0 , 使得f(x0+1)=f(x0)+f(1)成立,则称函数f(x)为“1的饱和函数”.给出下列四个函数:①f(x)= ;②f(x)=2x;③f(x)=lg(x2+2);④f(x)=cos(πx).其中是“1的饱和函数”的所有函数的序号为( )
A.①③
B.②④
C.①②
D.③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com