【题目】若函数f(x)满足:在定义域D内存在实数x0 , 使得f(x0+1)=f(x0)+f(1)成立,则称函数f(x)为“1的饱和函数”.给出下列四个函数:①f(x)= ;②f(x)=2x;③f(x)=lg(x2+2);④f(x)=cos(πx).其中是“1的饱和函数”的所有函数的序号为( )
A.①③
B.②④
C.①②
D.③④
【答案】B
【解析】解:对于①,若存在实数x0 , 满足f(x0+1)=f(x0)+f(1), 则 ,所以 ,
该方程无实根,因此①不是“1的饱和函数”;
对于②,若存在实数x0 , 满足f(x0+1)=f(x0)+f(1),
则 ,解得x0=1,因此②是“1的饱和函数”;
对于③,若存在实数x0 , 满足f(x0+1)=f(x0)+f(1),
则 ,
化简得 =0,该方程无实根,因此③不是“1的饱和函数”;
对于④,注意到 ,f( )+f(1)= ,
即f( +1)=f( )+f(1),
因此是“1的饱和函数”,
综上可知,其中是“1的饱和函数”的所有函数的序号是②④.
故选:B.
【考点精析】通过灵活运用函数的值,掌握函数值的求法:①配方法(二次或四次);②“判别式法”;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法即可以解答此题.
科目:高中数学 来源: 题型:
【题目】选修4-1:几何证明选讲
如图所示,已知AP是⊙O的切线,P为切点,AC是⊙O的割线,与⊙O交于B,C两点,圆心O在∠PAC的内部,点M是BC的中点.
(I)证明:A,P,O,M四点共圆;
(II)求∠OAM+∠APM的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】综合题。
(1)已知a,b∈(0,+∞),求证:x,y∈R,有 ≥ ;
(2)若0<a<2,0<b<2,0<c<2,求证:(2﹣a)b,(2﹣b)c,(2﹣c)a不能同时大于1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱柱为长方体,点是上的一点.
(1)若为的中点,当为何值时,平面平面;
(2)若, ,当时,直线与平面所成角的正弦值是否存在最大值?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正项等差数列{an}的前n项和为Sn , 且满足 ,S7=56. (Ⅰ)求数列{an}的通项公式an;
(Ⅱ)若数列{bn}满足b1=a1且bn+1﹣bn=an+1 , 求数列 的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2cosx(sinx﹣cosx)+1,x∈R.
(1)求函数f(x)的单调递增区间;
(2)将函数y=f(x)的图象向左平移 个单位后,再将图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的最大值及取得最大值时的x的集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某微信群中有甲、乙、丙、丁、戊五个人玩抢红包游戏,现有4个红包,每人最多抢一个,且红包被全部抢完,4个红包中有2个6元,1个8元,1个10元(红包中金额相同视为相同红包),则甲、乙都抢到红包的情况有( )
A. 18种 B. 24种 C. 36种 D. 48种
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com