精英家教网 > 高中数学 > 题目详情
9.已知a,b,c都是实数,则在命题“若a>b,则ac2>bc2”与它的逆命题、否命题、逆否命题这四个命题中,真命题的个数是2个.

分析 根据命题的等价关系,可先判断原命题与逆命题的真假.

解答 解:若a>b,c2=0,则ac2=bc2.∴原命题若a>b,则ac2>bc2为假命题;
∵逆否命题与原命题等价,∴逆否命题也为假命题;
 原命题的逆命题是:若ac2>bc2,则c2≠0且c2>0,则a>b.∴逆命题为真命题;
 又∵逆命题与否命题等价,∴否命题也为真命题;
综上,四个命题中,真命题的个数为2.
故答案为:2.

点评 本题考查了四种命题与命题的真假判断问题,根据命题的等价关系,四个命题中,真(假)命题的个数必为偶数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)在区间(a,b)内的极小值点的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.通过随机询问某校110名高中学生在购买食物时是否看营养说明,得到如下列联表:
 总计
看营养说明503080
不看营养说明102030
总计6050110
(1)从这50名女生中按是否看营养说明分层抽样,抽取一个容量为5的样本,问样本中看与不看营养说明的女生各有多少名?
(2)从(1)中的5名女生中随机选取2名进行深度访谈,求选到看与不看营养说明的女生各1名的概率;
(3)根据以上列联表,问能否在犯错误的概率不超过0.010的前提下认为“性别与在购买食物时看营养说明有关系”?
参考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
参考数据:
P(K2≥k00.100.050.0250.0100.005
k02.7063.8415.0246.6357.879

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知$x∈(-\frac{π}{2},\frac{π}{2})$,函数y=f(x)满足:f′(x)cosx-f(x)sinx=ex,f(0)=2,令$F(x)=f(x)-\frac{1}{cosx}+1$,若方程$F(x)+{(x+\frac{π}{4})^2}-m=0$在$x∈(-\frac{π}{2},\frac{π}{2})$有两个不等的实数根,则实数m的范围为($1+\sqrt{2}{e}^{-\frac{π}{4}},+∞$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$\overrightarrow a=(3,2),\overrightarrow b=(0,-1)$,则$-2\overrightarrow a+3\overrightarrow b$的坐标是(  )
A.(-6,7)B.(-6,-7)C.(-6,1)D.(-6,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,菱形ABCD的边长为4,∠BAD=60°,AC∩BD=O.将菱形ABCD沿对角线AC折起,得到三棱锥B-ACD,点M是棱BC的中点,DM=2$\sqrt{2}$

(I)求证:OD⊥平面ABC;
(Ⅱ)求直线MD与平面ABD所成角的正弦.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若f(x)=$\left\{\begin{array}{l}sinx,0≤x≤π\\ cosx,-π≤x≤0.\end{array}$则$\int{\begin{array}{l}π\\{-π}\end{array}}$f(x)dx=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.考察下列每组对象哪几组能够成集合?(  )
(1)比较小的数
(2)不大于10的偶数
(3)所有三角形
(4)高个子男生.
A.(1)(4)B.(2)(3)C.(2)D.(3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若一个集合是另一个集合的子集,称两个集合构成“全食”;若两个集合有公共元素,但互不为对方子集,则称两个集合构成“偏食”.对于集合$A=\{-1,\frac{1}{2},1\}$,B={x|ax2=1,a≥0},若两个集合构成“全食”或“偏食”,则a的值为0或1或4.

查看答案和解析>>

同步练习册答案