精英家教网 > 高中数学 > 题目详情
9.已知函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)在区间(a,b)内的极小值点的个数为(  )
A.1B.2C.3D.4

分析 利用函数的极值与导函数的图象的关系判断即可.

解答 解:函数y=f(x)的导函数y=f′(x)的图象如图所示,
则函数y=f(x)在区间(a,b)内的极小值点的个数为:1个.
即图象中的d点.
故选:A.

点评 本题考查函数的图象与导函数的关系,函数的极值的判断.是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知$\overrightarrow a=(1,1)$,$\overrightarrow b=(1,0)$,则$|{\overrightarrow a-2\overrightarrow b}|$=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设各项均为正数的数列{an}的前n项和为Sn,且满足2Sn2-(3n2+3n-2)Sn-3(n2+n)=0(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=$\frac{{a}_{n}}{{3}^{n+1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知一组数据:10.1,9.8,10,x,10.2的平均数为10,则该组数据的方差为0.02.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}的前n项和为Sn,且满足a1=3,Sn+1=3(Sn+1)(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)在数列{bn}中,b1=9,bn+1-bn=2(an+1-an)(n∈N*),若不等式λbn>an+36(n-4)+3λ对一切n∈N*恒成立,求实数λ的取值范围;
(Ⅲ)令Tn=$\frac{1}{{a}_{1}-1}$+$\frac{1}{3{a}_{2}-1}$+$\frac{1}{5{a}_{3}-1}$+…+$\frac{1}{(2n-1){a}_{n}-1}$(n∈N*),证明:对于任意的n∈N*,Tn<$\frac{7}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.集合A={x∈Z|x≥10},集合B是集合A的子集,且B中的元素满足:
①任意一个元素的各数位上的数字互不相同;
②任意一个元素的任意两个数位的数字之和不等于9.问
(1)集合B中两位数和三位数各有多少个?
(2)集合B中是否有五位数?是否有六位数?
(3)将集合B中的元素从小到大排列,求第1081个元素.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.关于函数y=sin|2x|+|cos2x|下列说法正确的是(  )
A.是周期函数,周期为πB.在$[{-\frac{π}{2},-\frac{π}{4}}]$上是单调递增的
C.在$[{-\frac{π}{3},\frac{7π}{6}}]$上最大值为$\sqrt{3}$D.关于直线$x=\frac{π}{4}$对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$(sinx+cosx)dx的值为(  )
A.0B.$\frac{π}{2}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知a,b,c都是实数,则在命题“若a>b,则ac2>bc2”与它的逆命题、否命题、逆否命题这四个命题中,真命题的个数是2个.

查看答案和解析>>

同步练习册答案