精英家教网 > 高中数学 > 题目详情
20.设各项均为正数的数列{an}的前n项和为Sn,且满足2Sn2-(3n2+3n-2)Sn-3(n2+n)=0(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=$\frac{{a}_{n}}{{3}^{n+1}}$,求数列{bn}的前n项和Tn

分析 (1)由$2S_n^2-({3{n^2}+3n-2}){S_n}-3({{n^2}+n})=0,n∈{N^*}$可得,n=1时,$2S_1^2-({3•{1^2}+3•1-2}){S_1}-3({{1^2}+1})=0$,又S1=a1,可得a1.由$2S_n^2-({3{n^2}+3n-2}){S_n}-3({{n^2}+n})=0,n∈{N^*}$可得,$({{S_n}+1})•[{2{S_n}-3({{n^2}+n})}]=0$,n∈N*,可得:${S_n}=\frac{3}{2}({{n^2}+n})$,当n≥2时,an=Sn-Sn-1.可得an
(2)由(1)可得${b_n}=\frac{a_n}{{{3^{n+1}}}}=\frac{3n}{{{3^{n+1}}}}=\frac{n}{3^n}$,利用错位相减法即可得出.

解答 解:(1)由$2S_n^2-({3{n^2}+3n-2}){S_n}-3({{n^2}+n})=0,n∈{N^*}$可得,
n=1时,$2S_1^2-({3•{1^2}+3•1-2}){S_1}-3({{1^2}+1})=0$,又S1=a1,所以a1=3.
由$2S_n^2-({3{n^2}+3n-2}){S_n}-3({{n^2}+n})=0,n∈{N^*}$可得,$({{S_n}+1})•[{2{S_n}-3({{n^2}+n})}]=0$,n∈N*
又an>0,所以Sn>0,∴${S_n}=\frac{3}{2}({{n^2}+n})$,
当n≥2时,${a_n}={S_n}-{S_{n-1}}=\frac{3}{2}[{{n^2}+n-{{({n-1})}^2}-({n-1})}]=3n$,
由(1)可知,此式对n=1也成立,∴an=3n.----------------(6分)
(2)由(1)可得${b_n}=\frac{a_n}{{{3^{n+1}}}}=\frac{3n}{{{3^{n+1}}}}=\frac{n}{3^n}$,
∴${T_n}={b_1}+{b_2}+{b_3}+…+{b_n}=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+…+\frac{n-1}{{{3^{n-1}}}}+\frac{n}{3^n}$,
∴$\frac{1}{3}{T_n}=\frac{1}{3^2}+\frac{2}{3^3}+\frac{3}{3^4}+…+\frac{n-1}{3^n}+\frac{n}{{{3^{n+1}}}}$,
∴${T_n}-\frac{1}{3}{T_n}=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+…+\frac{1}{3^n}-\frac{n}{{{3^{n+1}}}}$,
即$\frac{2}{3}{T_n}=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+…+\frac{1}{3^n}-\frac{n}{{{3^{n+1}}}}=\frac{{\frac{1}{3}-\frac{1}{{{3^{n+1}}}}}}{{1-\frac{1}{3}}}-\frac{n}{{{3^{n+1}}}}$=$\frac{1}{2}({1-\frac{1}{3^n}})-\frac{n}{{{3^{n+1}}}}=\frac{1}{2}-\frac{2n+3}{{2•{3^{n+1}}}}$,
∴${T_n}=\frac{3}{4}-\frac{2n+3}{{4•{3^n}}}$---------------------------------------(12分)

点评 本题考查了数列递推关系、等比数列的通项公式与求和公式、错位相减法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1的一个焦点为F(2,0),且离心率为$\frac{\sqrt{6}}{3}$
(1)求椭圆方程;
(2)过点M(3,0)作直线与椭圆交于A,B两点,求△OAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若实数x,y满足约束条件$\left\{\begin{array}{l}{x+y-1≤0}\\{x-y-1≤0}\\{x≥0}\end{array}\right.$,则z=2x-y的最大值为(  )
A.-1B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知随机变量ξ服从正态分布N(3,100),且P(ξ≤5)=0.84,则P(1≤ξ≤5)=0.68.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左焦点F(-c,0)(c>0),作圆x2+y2=$\frac{a^2}{4}$的切线,切点为E,延长FE交双曲线右支于点P,若$\overrightarrow{OP}=2\overrightarrow{OE}-\overrightarrow{OF}$,则双曲线的离心率为(  )
A.$\sqrt{10}$B.$\frac{{\sqrt{10}}}{2}$C.$\frac{{\sqrt{10}}}{5}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知向量$\overrightarrow a=({1,1,0}),\overrightarrow b=({-1,0,2})$,若$k\overrightarrow a+\overrightarrow b$与$\overrightarrow b$相互垂直,则k的值是5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知直线l的方程为(2-m)x+(2m+1)y+3m+4=0,其中m∈R.
(1)求证:直线l恒过定点;
(2)当m变化时,求点P(3,1)到直线l的距离的最大值;
(3)若直线l分别与x轴、y轴的负半轴交于A,B两点,求△AOB面积的最小值及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)在区间(a,b)内的极小值点的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.通过随机询问某校110名高中学生在购买食物时是否看营养说明,得到如下列联表:
 总计
看营养说明503080
不看营养说明102030
总计6050110
(1)从这50名女生中按是否看营养说明分层抽样,抽取一个容量为5的样本,问样本中看与不看营养说明的女生各有多少名?
(2)从(1)中的5名女生中随机选取2名进行深度访谈,求选到看与不看营养说明的女生各1名的概率;
(3)根据以上列联表,问能否在犯错误的概率不超过0.010的前提下认为“性别与在购买食物时看营养说明有关系”?
参考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
参考数据:
P(K2≥k00.100.050.0250.0100.005
k02.7063.8415.0246.6357.879

查看答案和解析>>

同步练习册答案