精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=x-1+$\frac{a}{{e}^{x}}$(a∈R).
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)求函数f(x)的极值;
(3)当a=1时,若直线l:y=kx-1与曲线y=f(x)没有公共点,求k的最大值.

分析 (1)求出原函数的导函数,依题意f′(1)=0,从而可求得a的值;
(2)f′(x)=1-$\frac{a}{{e}^{x}}$,分①a≤0时②a>0讨论,可知f(x)在∈(-∞,lna)上单调递减,在(lna,+∞)上单调递增,从而可求其极值;
(3)令g(x)=f(x)-(kx-1)=(1-k)x+$\frac{1}{{e}^{x}}$,则直线l:y=kx-1与曲线y=f(x)没有公共点,等价于方程g(x)=0在R上没有实数解,分k>1与k≤1讨论即可得答案.

解答 解:(1)由$f(x)=x-1+\frac{a}{e^x}(a∈R)$,得f′(x)=1-$\frac{a}{{e}^{x}}$,
∴f′(1)=1-$\frac{a}{e}$,
由曲线y=f(x)在点(1,f(1))处的切线平行于x轴,得$1-\frac{a}{e}=0$,即a=e;
(2)由f′(x)=1-$\frac{a}{{e}^{x}}$,知
若a≤0,则f′(x)>0,函数f(x)在实数集内为增函数,无极值;
若a>0,由f′(x)=1-$\frac{a}{{e}^{x}}$=0,得x=lna,
当x∈(-∞,lna)时,f′(x)<0,当x∈(lna,+∞)时,f′(x)>0.
∴f(x)在(-∞,lna)上单调递减,在(lna,+∞)上单调递增;
(3)当a=1时,f(x)=x-1+$\frac{1}{{e}^{x}}$,令g(x)=f(x)-(kx-1)=(1-k)x+$\frac{1}{{e}^{x}}$,
则直线l:y=kx-1与曲线y=f(x)没有公共点,
等价于方程g(x)=0在R上没有实数解.
假设k>1,此时g(0)=1>0,g($\frac{1}{k-1}$)=-1+$\frac{1}{{e}^{\frac{1}{k-1}}}$<0,
又函数g(x)的图象连续不断,由零点存在定理可知g(x)=0在R上至少有一解,
与“方程g(x)=0在R上没有实数解”矛盾,故k≤1.
又k=1时,g(x)=$\frac{1}{{e}^{x}}$>0,知方程g(x)=0在R上没有实数解.
∴k的最大值为1.

点评 本题考查利用导数研究函数的极值,考查利用导数研究曲线上某点切线方程,突出分类讨论思想与等价转化思想的综合运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知A,B,C,D是抛物线y2=4x上的四点,F是焦点,且$\overrightarrow{FA}+\overrightarrow{FB}+\overrightarrow{FC}+\overrightarrow{FD}=\overrightarrow 0$,则$|\overrightarrow{FA}|+|\overrightarrow{FB}|+|\overrightarrow{FC}|+|\overrightarrow{FD}|$=(  )
A.4B.6C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,若生产中出现乙级品的概率为0.03,丙级品的概率为0.02,则抽查一件产品是正品的概率为0.95.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.圆的半径是6cm,则30°的圆心角与圆弧围成的扇形面积是(  )
A.$\frac{π}{2}c{m^2}$B.$\frac{3π}{2}c{m^2}$C.πcm2D.3πcm2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.解方程:$\frac{1}{2x-1}$=$\frac{1}{2}-\frac{3}{4x-2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.运行A=5,B=8,X=A,A=B,B=X+A程序后输出A,B的结果是(  )
A.5,8B.8,5C.8,13D.5,13

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若函数f(x)=x3-6bx+2b在(0,1)内有极小值,则实数b的取值范围是(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若0<α<$\frac{π}{2}$,-$\frac{π}{2}$<β<0,cos($\frac{π}{4}$-$\frac{β}{2}$)=$\frac{\sqrt{3}}{3}$,cos($\frac{π}{4}$+α)=$\frac{1}{3}$,则cos(α+$\frac{β}{2}$)等于(  )
A.$\frac{\sqrt{3}}{3}$B.-$\frac{\sqrt{3}}{3}$C.$\frac{5\sqrt{3}}{9}$D.-$\frac{\sqrt{6}}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.直线的参数方程:$\left\{\begin{array}{l}x=2+t\\ y=1+\frac{{\sqrt{3}}}{3}t\end{array}\right.$(t为参数),则它的倾斜角为(  )
A.$\frac{π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{3}$D.$-\frac{π}{3}$

查看答案和解析>>

同步练习册答案