精英家教网 > 高中数学 > 题目详情
10.若函数f(x)=x3-6bx+2b在(0,1)内有极小值,则实数b的取值范围是(0,$\frac{1}{2}$).

分析 由题意知,f′(0)<0,f′(1)>0,解不等式组求得实数b的取值范围.

解答 解:由题意得,函数f(x)=x3-6bx+2b 的导数为 f′(x)=3x2-6b 在(0,1)内有零点,
且 f′(0)<0,f′(1)>0.     
即-6b<0,且 3-6b>0.
∴0<b<$\frac{1}{2}$,
故答案为:(0,$\frac{1}{2}$).

点评 本题考查函数在某区间上存在极值的条件,利用了导数在此区间上有零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知函数f(n)=$\left\{\begin{array}{l}{n^2}(n为奇数)\\-{n^2}(n为偶数)\end{array}$,且an=f(n)+f(n+1),则a1+a2+a3+…+a50=(  )
A.50B.60C.70D.80

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.边界在直线y=0,x=e,y=x及曲线y=$\frac{1}{x}$上的封闭的图形的面积为(  )
A.$\frac{3}{2}$B.2C.1D.e

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x-1+$\frac{a}{{e}^{x}}$(a∈R).
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)求函数f(x)的极值;
(3)当a=1时,若直线l:y=kx-1与曲线y=f(x)没有公共点,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>3,则f(x)<3x+5的解集为(  )
A.(-1,1)B.(-1,+∞)C.(-∞,-1)D.R

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知点E(3,0),椭圆$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{9}$=1上有两个动点P,Q,若EP⊥EQ,则$\overrightarrow{EP}$•$\overrightarrow{QP}$的最小值为(  )
A.6B.3-$\sqrt{3}$C.9D.9-6$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知向量$\overrightarrow a=(\frac{1}{2},\;\frac{1}{2}sinx+\frac{{\sqrt{3}}}{2}cosx)$和向量$\overrightarrow b=(1,f(x))$,且$\overrightarrow a∥\overrightarrow b$.
(1)求函数f(x)的最小正周期和最大值;
(2)已知△ABC的三个内角分别为A,B,C,若有$f(2A-\frac{π}{6})$=1,$BC=\sqrt{3}$,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.四次多项式f(x)的四个实根构成公差为2的等差数列,则f′(x)的所有根中最大根与最小根之差是(  )
A.2B.2$\sqrt{3}$C.4D.$2\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知f(x)=$\frac{1}{3}$x3+x(x∈R),若任意实数x使得f(a-x)+f(ax2-1)<0成立,则a的取值范围是(-∞,$\frac{1-\sqrt{2}}{2}$).

查看答案和解析>>

同步练习册答案