精英家教网 > 高中数学 > 题目详情
2.已知向量$\overrightarrow a=(\frac{1}{2},\;\frac{1}{2}sinx+\frac{{\sqrt{3}}}{2}cosx)$和向量$\overrightarrow b=(1,f(x))$,且$\overrightarrow a∥\overrightarrow b$.
(1)求函数f(x)的最小正周期和最大值;
(2)已知△ABC的三个内角分别为A,B,C,若有$f(2A-\frac{π}{6})$=1,$BC=\sqrt{3}$,求△ABC面积的最大值.

分析 (1)根据向量平行的坐标关系求出f(x)的解析式,化简成为y=Asin(ωx+φ)的形式,再利用周期公式求函数的最小正周期,结合三角函数的图象和性质求其最大值.
(2)利用$f(2A-\frac{π}{6})$=1,求出A的角的大小,在结合余弦定理,利用三角函数的图象和性质求其最大值.

解答 解:(1)由题意$\overrightarrow a∥\overrightarrow b$:
可得:$\frac{1}{2}f(x)=\frac{1}{2}sinx+\frac{{\sqrt{3}}}{2}cosx$
?$f(x)=2sin(x+\frac{π}{3})$
f(x)的最小正周期T=$\frac{2π}{ω}=\frac{2π}{1}=2π$
sinx的图象和性质可知:sin(x+$\frac{π}{3}$)的最大值是1,
∴$f(x)=2sin(x+\frac{π}{3})$的最大值是2.
所以:函数f(x)的最小正周期为2π,最大值为2.
(2)由(1)可知$f(x)=2sin(x+\frac{π}{3})$.
∵$f(2A-\frac{π}{6})$=1,得:$sin(2A+\frac{π}{6})=\frac{1}{2}$,
∵0<A<π,
∴$\frac{π}{6}<2A+\frac{π}{6}<\frac{13π}{6}$,
∴$2A+\frac{π}{6}=\frac{5π}{6}$,
解得:$A=\frac{π}{3}$.
又∵$BC=\sqrt{3}$,即$a=\sqrt{3},{a^2}={b^2}+{c^2}-2bc•cosA$,
∴b2+c2-bc=3,
又∵b2+c2≥2bc(当且仅当b=c时取等号),
则有:3+bc≥2bc,
∴bc≤3,
∴${S_{△ABC}}=\frac{1}{2}bc•sinA≤\frac{{3\sqrt{3}}}{4}$,
所以:△ABC面积的最大值为:$\frac{3\sqrt{3}}{4}$.

点评 本题考查了向量平行的坐标关系,三角函数的图象和性质的运用,余弦定理及基本不等式,覆盖知识点多,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
日期1月10日2月10日3月10日4月10日5月10日6月10日
昼夜温差x(℃)1011131286
就诊人数y(人)222529261612
该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
(1)求选取的2组数据恰好是相邻两个月的概率;
(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.解方程:$\frac{1}{2x-1}$=$\frac{1}{2}-\frac{3}{4x-2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若函数f(x)=x3-6bx+2b在(0,1)内有极小值,则实数b的取值范围是(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知数列{an}满足${a_1}=1,{a_n}{a_{n+1}}={2^n}$(n∈N*),则a2n=2n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若0<α<$\frac{π}{2}$,-$\frac{π}{2}$<β<0,cos($\frac{π}{4}$-$\frac{β}{2}$)=$\frac{\sqrt{3}}{3}$,cos($\frac{π}{4}$+α)=$\frac{1}{3}$,则cos(α+$\frac{β}{2}$)等于(  )
A.$\frac{\sqrt{3}}{3}$B.-$\frac{\sqrt{3}}{3}$C.$\frac{5\sqrt{3}}{9}$D.-$\frac{\sqrt{6}}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若sinα=-$\frac{4}{5}$,α是第三象限的角,则$sin(α+\frac{π}{4})$=(  )
A.-$\frac{{7\sqrt{2}}}{10}$B.$\frac{{7\sqrt{2}}}{10}$C.$-\frac{{\sqrt{2}}}{10}$D.$\frac{{\sqrt{2}}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设m、n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:
①若m⊥α,n∥α,则m⊥n;
②若α⊥γ,β⊥γ,α∩β=m,则m⊥γ;
③若m∥α,n?α,则m∥n;
④若α⊥β,α∩β=n,m⊥n,则m⊥β
其中正确命题的序号是①②.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的各项均为正数,前n项和为Sn,且${S_n}=\frac{{{a_n}({a_n}+1)}}{2}(n∈{N^*})$,
(Ⅰ)求证数列{an}是等差数列;
(Ⅱ)设${b_n}=\frac{1}{S_n},{T_n}={b_1}+{b_2}+…+{b_n}$,若λ≤Tn对于任意n∈N*恒成立,求实数λ的取值范围.

查看答案和解析>>

同步练习册答案