精英家教网 > 高中数学 > 题目详情
20.已知f(x)=$\frac{1}{3}$x3+x(x∈R),若任意实数x使得f(a-x)+f(ax2-1)<0成立,则a的取值范围是(-∞,$\frac{1-\sqrt{2}}{2}$).

分析 容易判断f(x)在R上为增函数,从而根据条件得出a-x<1-ax2恒成立,整理成ax2-x+a-1<0恒成立,从而得出$\left\{\begin{array}{l}{a<0}\\{△<0}\end{array}\right.$,这样解出a的范围即可.

解答 解:f(x)在R上为增函数,且是奇函数;
∴由f(a-x)+f(ax2-1)<0得,f(a-x)<f(1-ax2);
∴a-x<1-ax2对任意实数x都成立;
即ax2-x+a-1<0恒成立;
∴$\left\{\begin{array}{l}{a<0}\\{△=1-4a(a-1)<0}\end{array}\right.$;
解得$a<\frac{1-\sqrt{2}}{2}$;
∴a的取值范围是(-∞,$\frac{1-\sqrt{2}}{2}$).
故答案为:$(-∞,\frac{1-\sqrt{2}}{2})$.

点评 考查一次函数和y=ax3的单调性,函数单调性定义,要熟悉二次函数的图象,会解一元二次不等式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.若函数f(x)=x3-6bx+2b在(0,1)内有极小值,则实数b的取值范围是(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设m、n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:
①若m⊥α,n∥α,则m⊥n;
②若α⊥γ,β⊥γ,α∩β=m,则m⊥γ;
③若m∥α,n?α,则m∥n;
④若α⊥β,α∩β=n,m⊥n,则m⊥β
其中正确命题的序号是①②.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.直线的参数方程:$\left\{\begin{array}{l}x=2+t\\ y=1+\frac{{\sqrt{3}}}{3}t\end{array}\right.$(t为参数),则它的倾斜角为(  )
A.$\frac{π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{3}$D.$-\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若a,b,c是不全相等的正数,给出下列判断:
①(a-b)2+(b-c)2+(c-a)2≠0;
②a>b与a<b及a=b中至少有一个成立;
③a≠c,b≠c,a≠b不能同时成立.
其中判断正确的是①②.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数$f(x)=\vec a•\vec b$.其中向量$\vec a=(m,cosx),\vec b=(1+sinx,1),x∈R,且f(\frac{π}{2})=2$.
(Ⅰ)求实数m的值;
(Ⅱ)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的各项均为正数,前n项和为Sn,且${S_n}=\frac{{{a_n}({a_n}+1)}}{2}(n∈{N^*})$,
(Ⅰ)求证数列{an}是等差数列;
(Ⅱ)设${b_n}=\frac{1}{S_n},{T_n}={b_1}+{b_2}+…+{b_n}$,若λ≤Tn对于任意n∈N*恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若f(cosx)=cos2x,则f(1)=(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.三棱锥S-ABC的所有顶点都在球O的表面上,SA⊥平面ABC,AB⊥BC,又SA=AB=BC=1,则球Q的体积为(  )
A.$\frac{\sqrt{3}}{2}$πB.$\frac{3}{2}$πC.$\sqrt{3}$πD.12π

查看答案和解析>>

同步练习册答案