精英家教网 > 高中数学 > 题目详情
8.直线的参数方程:$\left\{\begin{array}{l}x=2+t\\ y=1+\frac{{\sqrt{3}}}{3}t\end{array}\right.$(t为参数),则它的倾斜角为(  )
A.$\frac{π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{3}$D.$-\frac{π}{3}$

分析 根据参数方程得出直线的斜率,即可求出倾斜角.

解答 解:直线l的斜率k=$\frac{\sqrt{3}}{3}$,
∴直线的倾斜角为$\frac{π}{6}$.
故选A.

点评 本题考查了直线的参数方程与斜率,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x-1+$\frac{a}{{e}^{x}}$(a∈R).
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)求函数f(x)的极值;
(3)当a=1时,若直线l:y=kx-1与曲线y=f(x)没有公共点,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.四次多项式f(x)的四个实根构成公差为2的等差数列,则f′(x)的所有根中最大根与最小根之差是(  )
A.2B.2$\sqrt{3}$C.4D.$2\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知$\overrightarrow a=(4,2),\overrightarrow b=(1,2)$,求$\overrightarrow a$与$\overrightarrow b$夹角的余弦值,并求$\overrightarrow a+\overrightarrow b$在$\overrightarrow a$方向上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,如果有性质acosA=bcosB,则这个三角形的形状是等腰或直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在极坐标系中,以A(0,2)为圆心,2为半径的圆的极坐标方程为ρ=4sinθ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知f(x)=$\frac{1}{3}$x3+x(x∈R),若任意实数x使得f(a-x)+f(ax2-1)<0成立,则a的取值范围是(-∞,$\frac{1-\sqrt{2}}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在复平面内,方程|z|2+|z|=2|所表示的图形是(  )
A.四个点B.两条直线C.一个圆D.两个圆

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设$\overrightarrow a$=(1,2),$\overrightarrow b$=(-1,x),若$\overrightarrow a$∥$\overrightarrow b$,则x=-2.

查看答案和解析>>

同步练习册答案