精英家教网 > 高中数学 > 题目详情
3.在△ABC中,如果有性质acosA=bcosB,则这个三角形的形状是等腰或直角三角形.

分析 利用余弦定理代入化简即可得出.

解答 解:∵acosA=bcosB,
∴$a×\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=b×$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$,
化为:(a2+b2-c2)(a+b)(a-b)=0,
解得a=b,或a2+b2=c2
∴该三角形是等腰或直角三角形.
故答案为:等腰或直角.

点评 本题考查了余弦定理的应用、三角形形状的判定,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.解方程:$\frac{1}{2x-1}$=$\frac{1}{2}-\frac{3}{4x-2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若sinα=-$\frac{4}{5}$,α是第三象限的角,则$sin(α+\frac{π}{4})$=(  )
A.-$\frac{{7\sqrt{2}}}{10}$B.$\frac{{7\sqrt{2}}}{10}$C.$-\frac{{\sqrt{2}}}{10}$D.$\frac{{\sqrt{2}}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设m、n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:
①若m⊥α,n∥α,则m⊥n;
②若α⊥γ,β⊥γ,α∩β=m,则m⊥γ;
③若m∥α,n?α,则m∥n;
④若α⊥β,α∩β=n,m⊥n,则m⊥β
其中正确命题的序号是①②.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若过点A(2,m)可作函数f(x)=x3-3x对应曲线的三条切线,则实数m的取值范围为(-6,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.直线的参数方程:$\left\{\begin{array}{l}x=2+t\\ y=1+\frac{{\sqrt{3}}}{3}t\end{array}\right.$(t为参数),则它的倾斜角为(  )
A.$\frac{π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{3}$D.$-\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若a,b,c是不全相等的正数,给出下列判断:
①(a-b)2+(b-c)2+(c-a)2≠0;
②a>b与a<b及a=b中至少有一个成立;
③a≠c,b≠c,a≠b不能同时成立.
其中判断正确的是①②.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的各项均为正数,前n项和为Sn,且${S_n}=\frac{{{a_n}({a_n}+1)}}{2}(n∈{N^*})$,
(Ⅰ)求证数列{an}是等差数列;
(Ⅱ)设${b_n}=\frac{1}{S_n},{T_n}={b_1}+{b_2}+…+{b_n}$,若λ≤Tn对于任意n∈N*恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$均为平面内任意非零向量且互不共线,则下列4个命题:
(1)($\overrightarrow{a}$•$\overrightarrow{b}$)2=$\overrightarrow{a}$2$\overrightarrow{b}$2  
(2)|$\overrightarrow{a}$+$\overrightarrow{b}$|≥|$\overrightarrow{a}$-$\overrightarrow{b}$|
(3)|$\overrightarrow{a}$+$\overrightarrow{b}$|2=($\overrightarrow{a}$+$\overrightarrow{b}$)2
(4)($\overrightarrow{b}$•$\overrightarrow{c}$)$\overrightarrow{a}$-($\overrightarrow{c}$•$\overrightarrow{a}$)$\overrightarrow{b}$与$\overrightarrow{c}$不一定垂直.
其中真命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案