精英家教网 > 高中数学 > 题目详情
若方程表示焦点在y轴上的椭圆,则m的取值范围为         

因为方程表示焦点在轴上的椭圆,所以,解得
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题


(本题满分14分)已知直角坐标平面内点到点与点的距离之和为
(Ⅰ)试求点的轨迹的方程;
(Ⅱ)若斜率为的直线与轨迹交于两点,点为轨迹上一点,记直线的斜率为,直线的斜率为,试问:是否为定值?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分18分,其中第1小题6分,第2小题4分,第3小题8分)
定义变换可把平面直角坐标系上的点变换到这一平面上的点.特别地,若曲线上一点经变换公式变换后得到的点与点重合,则称点是曲线在变换下的不动点.
(1)若椭圆的中心为坐标原点,焦点在轴上,且焦距为,长轴顶点和短轴顶点间的距离为2. 求该椭圆的标准方程. 并求出当时,其两个焦点经变换公式变换后得到的点的坐标;
(2)当时,求(1)中的椭圆在变换下的所有不动点的坐标;
(3)试探究:中心为坐标原点、对称轴为坐标轴的双曲线在变换
)下的不动点的存在情况和个数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的上顶点为,左右焦点分别为,直线与圆相切,若椭圆上点使得成等比数列

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在原点,焦点在x轴上,离心率为,过点与椭圆交于两点.
(1)若直线的斜率为1,且,求椭圆的标准方程;
(2)若(1)中椭圆的右顶点为,直线的倾斜角为,问为何值时,取得最大值,并求出这个最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点B为椭圆+=1的左准线与轴的交点,若线段AB的中点C在椭圆上,则该椭圆的离心率为       
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆C,经过椭圆C的右焦点F且斜率为kk≠0)的直线l交椭圆G于A、B两点,M为线段AB的中点,设O为椭圆的中心,射线OM交椭圆于N点.

(1)是否存在k,使对任意m>0,总有成立?若存在,求出所有k的值;
(2)若,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知动点P(x,y)在椭圆上,若F(3,0),,且M为PF中点,则=_____.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的左、右焦点分别为,若椭圆上存在一点使,则该椭圆的离心率的取值范围为          

查看答案和解析>>

同步练习册答案