如图,已知正三棱柱ABC-A1B1C1的底面边长为2cm,高为5cm,则一质点自点A出发,沿着三棱柱的侧面绕行两周到达点A1的最短路线的长为________cm.
科目:高中数学 来源: 题型:
已知抛物线y2=2px(p>0)的焦点为F,点P1(x1,y1),P2(x2,y2),P3(x3,y3)在抛物线上,且2x2=x1+x3,则有( )
A.|FP1|+|FP2|=|FP3| B.|FP1|2+|FP2|2=|FP3|2
C.2|FP2|=|FP1|+|FP3| D.|FP2|2=|FP1|·|FP3|
查看答案和解析>>
科目:高中数学 来源: 题型:
若F1,F2是椭圆
+
=1(a>2b>0)的两个焦点,分别过F1,F2作倾斜角为45°的两条直线与椭圆相交于四点,以该四点为顶点的四边形和以椭圆的四个顶点为顶点的四边形的面积比等于
,则该椭圆的离心率为( )
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
在如图所示的几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E、G、F分别为MB、PB、PC的中点,且AD=PD=2MA.
![]()
(1)求证:平面EFG⊥平面PDC;
(2)求三棱锥P-MAB与四棱锥P-ABCD的体积之比.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知四棱锥P-ABCD的正视图是一个底边长为4、腰长为3的等腰三角形,如图分别是四棱锥P-ABCD的侧视图和俯视图.
![]()
(1)求证:AD⊥PC;
(2)求四棱锥P-ABCD的侧面PAB的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
平面α经过三点A(-1,0,1)、B(1,1,2),C(2,-1,0),则下列向量中与平面α的法向量不垂直的是( )
A.
B.(6,-2,-2)
C.(4,2,2) D.(-1,1,4)
查看答案和解析>>
科目:高中数学 来源: 题型:
.如图,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点.
![]()
(1)求证:AF∥平面BCE;
(2)求证:平面BCE⊥平面CDE.
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,在斜三棱柱ABC-A1B1C1中,点O、E分别是A1C1、AA1的中点,AO⊥平面A1B1C1.已知∠BCA=90°,AA1=AC=BC=2.
![]()
(1)证明:OE∥平面AB1C1;
(2)求异面直线AB1与A1C所成的角;
(3)求A1C1与平面AA1B1所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知m、n是两条不同直线,α、β、γ是三个不同平面,下列命题中正确的是( )
A.若m∥α,n∥α,则m∥n B.若α⊥γ,β⊥γ,则α∥β
C.若m∥α,m∥β,则α∥β D.若m⊥α,n⊥α,则m∥n
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com