精英家教网 > 高中数学 > 题目详情
定义:如果函数y=f(x)在区间[a,b]上存在x1,x2(a<x1<x2<b),满足f′(x1)=
f(b)-f(a)
b-a
,f′(x2)=
f(b)-f(a)
b-a
,则称函数y=f(x)在区间[a,b]上的一个双中值函数,已知函数f(x)=
1
3
x3-x2+a是区间[0,a]上的双中值函数,则实数a的取值范围是(  )
A、(0,
3
2
B、(
3
2
,3)
C、(
1
2
,3)
D、(1,3)
考点:利用导数研究函数的单调性,函数单调性的判断与证明
专题:新定义
分析:根据题目给出的定义可得f′(x1)=f′(x2)=
f(a)-f(0)
a
=
1
3
a3-a2
a
=
1
3
a2-a
,即方程x2-2x=
1
3
a2-a
在区间(0,a)有两个解,利用二次函数的性质可知实数a的取值范围是(
3
2
,3)
解答: 解:由题意可知,
在区间[0,a]存在x1,x2(a<x1<x2<b),
满足f′(x1)=f′(x2)=
f(a)-f(0)
a
=
1
3
a3-a2
a
=
1
3
a2-a

∵f(x)=
1
3
x3-x2+a,
∴f′(x)=x2-2x,
∴方程x2-2x=
1
3
a2-a
在区间(0,a)有两个解.
g(x)=x2-2x-
1
3
a2+a
,(0<x<a)
△=4+
4
3
a2-4a>0
g(0)=-
1
3
a2+a>0
g(a)=
2
3
a2-a>0
a>0

解得,
3
2
<a<3

∴实数a的取值范围是(
3
2
,3)

故选:B.
点评:本题主要考查了导数的几何意义,二次函数的性质与方程根的关系,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,P为不等式组
y-3≤0
3x+y-6≥0
x-y-2≤0
所表示的平面区域内一动点,则线段|OP|的最小值等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

e1
e2
是两个不共线的向量,
a
=3
e1
+4
e2
b
=
e1
-2
e2
.若以
a
b
为基底表示向量
e1
+2
e2
,即
e1
+2
e2
a
b
,则λ+μ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

复数z=1+i,则
1
z
+
.
z
对应的点所在的象限为(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,点M是BC中点.若∠A=120°,
AB
AC
=-
1
2
,则|
AM
|
的最小值是(  )
A、
2
B、
2
2
C、
3
2
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示的程序框图描述的算法称为欧几里得辗转相除法,若输入m=2010,n=1541,则输出的m的值为(  )
A、2010B、1541
C、134D、67

查看答案和解析>>

科目:高中数学 来源: 题型:

下列4个命题中,真命题的个数是(  )
①如果a>0且a≠1,那么logaf(x)=logag(x)的充要条件是af(x)=ag(x)
②如果A、B为△ABC的两个内角,那么A>B的充要条件是sinA>sinB
③如果向量
a
与向量
b
均为非零向量,那么(
a
b
)2=
a
2
b
2

④函数f(x)=
sin2x+2
|sinx|
的最小值为2
2
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列x1,x2,x3…x9的公差为1,随机变量ξ等可能的取值x1,x2,x3…x9,则方差D(ξ)为(  )
A、
10
3
B、
20
3
C、
10
9
D、
20
9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的顶点在坐标原点,焦点在x轴上,抛物线C上的点M(2,m)到焦点F的距离为3.
(Ⅰ)求抛物线C的方程:
(Ⅱ)过点(2,0)的直线l与抛物线C交于A、B两点,若|AB|=4
6
,求直线l的方程.

查看答案和解析>>

同步练习册答案