【题目】已知椭圆
的一个焦点为
,且离心率为
.
(1)求椭圆方程;
(2)斜率为
的直线
过点F,且与椭圆交于
两点,P为直线
上的一点,
若
为等边三角形,求直线
的方程.
【答案】(1)
(2)
或![]()
【解析】试题分析:本题主要考查椭圆的标准方程以及几何性质、直线与椭圆相交问题、韦达定理、两点间距离公式、直线的方程等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,利用椭圆的标准方程中a,b,c的关系,焦点坐标,离心率列出方程组,解出a和b,从而得到椭圆的标准方程;第二问,点斜式设出直线方程,由于直线与椭圆交于A,B,则直线与椭圆方程联立消参得到关于x的方程,设出A,B点坐标,利用韦达定理,得到
,
,再结合两点间距离公式求出
的长,利用中点坐标公式得出AB中点M的坐标,从而求出|MP|的长,利用
为正三角形,则
,列出等式求出k的值,从而得到直线的方程.
(1)依题意有
,
.
可得
,
.
故椭圆方程为
. 5分
(2)直线
的方程为
.
联立方程组![]()
消去
并整理得
.
设
,
.
故
,
.
则![]()
.
设
的中点为
.
可得
,
.
直线
的斜率为
,又
,
所以
.
当△
为正三角形时,
,
可得
,
解得
.
即直线
的方程为
,或
. 13分
科目:高中数学 来源: 题型:
【题目】将函数
的图象向左平移
个单位长度后,再将所得的图象向下平移一个单位长度得到函数
的图象,且
的图象与直线
相邻两个交点的距离为
,若
对任意
恒成立,则
的取值范围是 ( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
过点
与点
.
(1)求椭圆
的方程;
(2)设直线
过定点
,且斜率为
,若椭圆
上存在
,
两点关于直线
对称,
为坐标原点,求
的取值范围及
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某辆汽车以
千米/小时的速度在高速公路上匀速行驶(考虑到高速公路行车安全要求
)时,每小时的油耗(所需要的汽油量)为
升,其中
为常数,且
.
(1)若汽车以
千米/小时的速度行驶时,每小时的油耗为
升,欲使每小时的油耗不超过
升,求
的取值范围;
(2)求该汽车行驶
千米的油耗的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】扇形AOB中心角为
,所在圆半径为
,它按如图(Ⅰ)(Ⅱ)两种方式有内接矩形CDEF.
![]()
(1)矩形CDEF的顶点C、D在扇形的半径OB上,顶点E在圆弧AB上,顶点F在半径OA上,设
;
(2)点M是圆弧AB的中点,矩形CDEF的顶点D、E在圆弧AB上,且关于直线OM对称,顶点C、F分别在半径OB、OA上,设
;
试研究(1)(2)两种方式下矩形面积的最大值,并说明两种方式下哪一种矩形面积最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
,点
,点
,动圆
与
轴相切于点
,过点
的直线
与圆
相切于点
,过点
的直线
与圆
相切于点
(
均不同于点
),且
与
交于点
,设点
的轨迹为曲线
.
(1)证明:
为定值,并求
的方程;
(2)设直线
与
的另一个交点为
,直线
与
交于
两点,当
三点共线时,求四边形
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
在点
处的切线方程为
.
(1)求
的值;
(2)已知
,当
时,
恒成立,求实数
的取值范围;
(3)对于在
中的任意一个常数
,是否存在正数
,使得
?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com