| A. | (1,+∞) | B. | (-∞,-1)∪(1,+∞) | C. | (-1,1) | D. | (-∞,1) |
分析 构造函数g(x)=f(x)-x-1,g'(x)=f′(x)-1<0,从而可得g(x)的单调性,结合f(1)=2,可求得g(1)=1,然后求出不等式的解集即可.
解答 解:令g(x)=f(x)-x-1,
∵f′(x)<1(x∈R),
∴g′(x)=f′(x)-1<0,
∴g(x)=f(x)-x-1为减函数,
又f(1)=2,
∴g(1)=f(1)-1-1=0,
∴不等式f(x)>x+1的解集?g(x)=f(x)-x-1>0=g(1)的解集,
即g(x)>g(1),又g(x)=f(x)-x-1为减函数,
∴x<1,即x∈(-∞,1).
故选:D.
点评 本题利用导数研究函数的单调性,可构造函数,考查所构造的函数的单调性是关键,也是难点所在,属于中档题.
科目:高中数学 来源: 题型:解答题
| 编号 | 2 | 7 | 12 | 17 | 22 | 27 | 32 | 37 | 42 | 47 |
| 性别 | 男 | 女 | 男 | 男 | 女 | 男 | 女 | 男 | 女 | 女 |
| 投篮成 绩 | 90 | 60 | 75 | 80 | 83 | 85 | 75 | 80 | 70 | 60 |
| 编号 | 1 | 8 | 10 | 20 | 23 | 28 | 33 | 35 | 43 | 48 |
| 性别 | 男 | 男 | 男 | 男 | 男 | 男 | 女 | 女 | 女 | 女 |
| 投篮成 绩 | 95 | 85 | 85 | 70 | 70 | 80 | 60 | 65 | 70 | 60 |
| 优秀 | 非优秀 | 合计 | |
| 男 | 4 | 2 | 6 |
| 女 | 0 | 4 | 4 |
| 合计 | 4 | 6 | 10 |
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com