分析 求出函数的导数,分离参数得到$p≥\frac{2x}{{{x^2}+1}}=\frac{2}{{x+\frac{1}{x}}}$恒成立,结合基本不等式的性质求出p的范围即可.
解答 解:∵${f^'}(x)=\frac{{p{x^2}-2x+p}}{x^2}$,
要使f(x)为单调增函数,须f′(x)≥0恒成立,
即px2-2x+p≥0恒成立,
即$p≥\frac{2x}{{{x^2}+1}}=\frac{2}{{x+\frac{1}{x}}}$恒成立,
又$\frac{2}{{x+\frac{1}{x}}}≤1$,
故当p≥1时,f(x)在(0,+∞)为单调增函数,
故答案为:[1,+∞).
点评 本题考查了利用导数研究函数的单调性等基础题知识,考查运算求解能力,考查化归与转化思想,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,+∞) | B. | (-∞,-1)∪(1,+∞) | C. | (-1,1) | D. | (-∞,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|-1≤x≤1} | B. | {x|-2≤x≤3} | C. | {x|-1<x<1} | D. | {x|-2≤x<1} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2π | B. | 4π | C. | 6π | D. | 8π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 1+x | C. | 1+x+x2 | D. | 1+x+x2+x3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com