精英家教网 > 高中数学 > 题目详情
13.用数学归纳法证明:1+x+x2+x3+…+xn+2=$\frac{{1-{x^{n+3}}}}{1-x}$(x≠1,n∈N+)成立时,验证n=1的过程中左边的式子是(  )
A.1B.1+xC.1+x+x2D.1+x+x2+x3

分析 根据等式的特点,得到等式左边式子从1开始进行相加,以xn+2结束,当n=1时,以x3结束进行判断即可.

解答 解:当n=1时,等式左边成立的式子是1+x+x2+x3
故选:D

点评 本题主要考查数学归纳法的应用,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.某校高三4班有50名学生进行了一场投篮测试,其中男生30人,女生20人.为了了解其投篮成绩,甲、乙两人分别都对全班的学生进行编号(1-50号),并以不同的方法进行数据抽样,其中一人用的是系统抽样,另一人用的是分层抽样.若此次投篮测试的成绩大于或等于80分视为优秀,小于80分视为不优秀,如表是甲、乙两人分别抽取的样本数据:
甲抽取的样本数据
编号271217222732374247
性别
投篮成 绩90607580838575807060
乙抽取的样本数据
编号181020232833354348
性别
投篮成 绩95858570708060657060
(Ⅰ)在乙抽取的样本中任取3人,记投篮优秀的学生人数为X,求X的分布列和数学期望.
优秀非优秀合计
426
044
合计4610
(Ⅱ)请你根据乙抽取的样本数据完成下列2×2列联表,判断是否有95%以上的把握认为投篮成绩和性别有关?
(Ⅲ)判断甲、乙各用何种抽样方法,并根据(Ⅱ)的结论判断哪种抽样方法更优?说明理由.
下面的临界值表供参考:
P(K2≥k)0.150.100.050.0100.0050.001
k2.0722.7063.8416.6357.87910.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设函数f(x)=p(x-$\frac{1}{x}$)-2lnx(p是实数)在其定义域内为增函数,则p的取值范围为[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=ex+4x-3零点的个数是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知平面向量$\overrightarrow{a}$=(1,-3),$\overrightarrow{b}$=(4,-2),若λ$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$垂直,则λ等于(  )
A.-2B.2C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.①某小区有4000人,其中少年人、中年人、老年人的比例为1:2:4,为了了解他们的体质情况,要从中抽取一个容量为200的样本;
②从全班45名同学中选2人参加某项活动.
Ⅰ.简单随机抽样法;Ⅱ.系统抽样法;Ⅲ.分层抽样法.
问题与方法配对正确的是(  )
A.①Ⅲ,②ⅠB.①Ⅰ,②ⅡC.①Ⅱ,②ⅢD.①Ⅲ,②Ⅱ

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设f(x)在[a,b]上的图象是连续不断的一条曲线,且a≤f(x)≤b,试问:在[a,b]中是否存在常数c,使得f(c)=c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知曲线C在直角坐标系xOy下的参数方程为$\left\{\begin{array}{l}{x=1+\sqrt{3}cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求曲线C的极坐标方程;
(Ⅱ)直线l的极坐标方程是ρcos(θ-$\frac{π}{6}$)=3$\sqrt{3}$,射线OT:θ=$\frac{π}{3}$(ρ>0)与曲线C交于A点,与直线l交于B,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.知函数f(x)=$\frac{{x}^{2}}{{x}^{2}+1}$+ax为偶函数.
(1)求a的值;
(2)用定义法证明函数f(x)在区间[0,+∞)上是增函数;
(3)解关于x的不等式f(2x-1)<f(x+1).

查看答案和解析>>

同步练习册答案