精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=ax3+bx2-2x+c在x=-2处取得极大值6,在x=1处取得极小值.
(1)求a,b,c的值;       
(2)求f(x)的单调区间;
(3)求f(x)在区间[-3,3]的最大值和最小值.

分析 (1)因为函数f(x)=ax3+bx2-2x+c在x=-2时有极大值6,在x=1时有极小值得到三个方程求出a、b、c;
(2)令f′(x)>0,可得x<-2或x>1;f′(x)<0,可得-2<x<1,即可求f(x)的单调区间;
(3)在区间[-3,3]上讨论函数的增减性,得到函数的最值.

解答 解:(1)f′(x)=3ax2+2bx-2.由条件知$\left\{\begin{array}{l}{f′(-2)=12a-4b-2=0}\\{f′(1)=3a+2b-2=0}\\{f(-2)=-8a+4b+4+c=6}\end{array}\right.$,
解得a=$\frac{1}{3}$,b=$\frac{1}{2}$,c=$\frac{8}{3}$;
(2)f′(x)=x2+x-2=(x+2)(x-1),
令f′(x)>0,可得x<-2或x>1;f′(x)<0,可得-2<x<1,
∴f(x)的单调增区间是(-∞,-2),(1,+∞);单调减区间是(-2,1);
(3)由(2)可得函数在(-3,-2)上单调递增,在(-2,1)上单调递减,在(1,3)上单调递增,
∵f(-3)=$\frac{25}{6}$,f(-2)=6,f(1)=$\frac{3}{2}$,f(3)=$\frac{61}{6}$
∴在区间[-3,3]上,当x=3时,fmax=$\frac{61}{6}$;当x=1,fmin=$\frac{3}{2}$.

点评 本题考查学生利用导数研究函数极值的能力,利用导数研究函数增减性的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.设点P在曲线ρsinθ=2上,点Q在曲线$\left\{\begin{array}{l}{x=1+cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数)上,求|PQ|的最小值(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.复数(1-$\sqrt{2}$i)•i的虚部是(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设函数f(x)=p(x-$\frac{1}{x}$)-2lnx(p是实数)在其定义域内为增函数,则p的取值范围为[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{1}{2}{x^2}$-alnx(a∈R).
(1)试讨论函数的单调性;
(2)若函数f(x)在(1,+∞)上为增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=ex+4x-3零点的个数是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知平面向量$\overrightarrow{a}$=(1,-3),$\overrightarrow{b}$=(4,-2),若λ$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$垂直,则λ等于(  )
A.-2B.2C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设f(x)在[a,b]上的图象是连续不断的一条曲线,且a≤f(x)≤b,试问:在[a,b]中是否存在常数c,使得f(c)=c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(α)=$\frac{{sin(\frac{π}{2}-α)cos(10π-α)tan(-α+3π)}}{{tan(π+α)sin(\frac{5π}{2}+α)}}$.
(1)化简f(α);
(2)若α=-1860°,求f(α)的值;
(3)若α∈(0,$\frac{π}{2}$),且sin(α-$\frac{π}{6}$)=$\frac{1}{3}$,求f(α)的值.

查看答案和解析>>

同步练习册答案