精英家教网 > 高中数学 > 题目详情
14.已知:指数函数f(x)的图象经过点(2,4).
(1)求函数f(x)的解析式;
(2)若f(x-1)<1,求x的取值范围.

分析 (1)设f(x)=ax,利用待定系数法进行求解.
(2)根据指数函数的单调性,解指数不等式即可.

解答 解:(1)设f(x)=ax
∵f(x)的图象经过点(2,4).
∴f(2)=a2=4,则a=2,
即f(x)=2x
(2)若f(x-1)<1,则2x-1<1,即x-1<0,
得x<1,即不等式的解集为(-∞,1).

点评 本题主要考查指数函数解析式和单调性的应用,利用待定系数法求出函数的解析式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.设函数f(x)=p(x-$\frac{1}{x}$)-2lnx(p是实数)在其定义域内为增函数,则p的取值范围为[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设f(x)在[a,b]上的图象是连续不断的一条曲线,且a≤f(x)≤b,试问:在[a,b]中是否存在常数c,使得f(c)=c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知曲线C在直角坐标系xOy下的参数方程为$\left\{\begin{array}{l}{x=1+\sqrt{3}cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求曲线C的极坐标方程;
(Ⅱ)直线l的极坐标方程是ρcos(θ-$\frac{π}{6}$)=3$\sqrt{3}$,射线OT:θ=$\frac{π}{3}$(ρ>0)与曲线C交于A点,与直线l交于B,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=$\left\{\begin{array}{l}{a^x},x≤1\\{x^2}-6x+7,x>1\end{array}\right.$(a>0,a≠1),若函数y=|f(x)|-ax有三个零点,则实数a的取值范围是(6-2$\sqrt{7}$,1)∪(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知α,β为锐角,cos(${\frac{π}{2}$-α)=$\frac{3}{5}$,sin(${\frac{3π}{2}$+β)=-$\frac{5}{13}$,求sin(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(α)=$\frac{{sin(\frac{π}{2}-α)cos(10π-α)tan(-α+3π)}}{{tan(π+α)sin(\frac{5π}{2}+α)}}$.
(1)化简f(α);
(2)若α=-1860°,求f(α)的值;
(3)若α∈(0,$\frac{π}{2}$),且sin(α-$\frac{π}{6}$)=$\frac{1}{3}$,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.知函数f(x)=$\frac{{x}^{2}}{{x}^{2}+1}$+ax为偶函数.
(1)求a的值;
(2)用定义法证明函数f(x)在区间[0,+∞)上是增函数;
(3)解关于x的不等式f(2x-1)<f(x+1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=(ax+b)lnx-bx+3在(1,f(1))处的切线方程为y=2.
(1)求a,b的值及函数f(x)的极值;
(2)证明:$\frac{ln2}{2}×\frac{ln3}{3}×\frac{ln4}{4}×…×\frac{lnn}{n}<\frac{1}{n}(n≥2,n∈N)$.

查看答案和解析>>

同步练习册答案