精英家教网 > 高中数学 > 题目详情
10.若实数x,y满足不等式组$\left\{\begin{array}{l}{2x+y+2≥0}\\{x+y-1≤0}\\{y≥0}\end{array}\right.$,则z=y-2x的最小值为-2.

分析 作出不等式组对应的平面区域,利用数形结合即可得到结论.

解答 解:由z=y-2x,得y=2x+z,
作出不等式对应的可行域,
平移直线y=2x+z,
由平移可知当直线y=2x+z经过点A时,
线y=2x+z的截距最小,此时z取得最值,
由$\left\{\begin{array}{l}{y=0}\\{x+y-1=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=1}\\{y=0}\end{array}\right.$,
即A(1,0)
代入z=y-2x,得z=0-2×1=-2,
即z=y-2x的最小值为-2.
故答案为:-2.

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知指数函数f(x)=ax-16+7(a>0且a≠1)的图象恒过定点P,若定点P在幂函数g(x)的图象上,则幂函数g(x)的图象是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,a,b,c分别是内角A,B,C的对边,若bsinA=3csinB,a=3,$cosB=\frac{2}{3}$,则b=(  )
A.14B.6C.$\sqrt{14}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,在△ABC中,C=$\frac{π}{3}$,BC=4,点D在边AC上,AD=DB,DE⊥AB,E为垂足,若DE=2$\sqrt{2}$,则cosA等于(  )
A.$\frac{2\sqrt{2}}{3}$B.$\frac{\sqrt{2}}{4}$C.$\frac{\sqrt{6}}{4}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若$\overrightarrow{GA}$+$\overrightarrow{GB}$+$\overrightarrow{GC}$=$\overrightarrow{0}$,a,b,c分别是角A,B,C的对边,若a$\overrightarrow{GA}$+b$\overrightarrow{GB}$+$\frac{\sqrt{3}}{3}$c$\overrightarrow{GC}$=$\overrightarrow{0}$,则角A=30°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如果实数x,y满足条件$\left\{\begin{array}{l}{x-y+1≥0}\\{2x+y-2≥0}\\{x-1≤0}\end{array}\right.$,则z=x-2y的最小值为-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,a、b、c分别是角A、B、C所对的边,1+$\frac{tanC}{tanB}$=$\frac{2a}{b}$,
(1)求角C的大小;(2)若cos(B+$\frac{π}{6}$)=$\frac{1}{3}$,求sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.首项为正数的等差数列,前n项和为Sn,且S3=S8,当n=5或6时,Sn取到最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.是否存在复数z.使其满足$\overline{z}$•z+$2i\overline{z}$=3+ai?如果存在.求实数a的取值范围;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案