精英家教网 > 高中数学 > 题目详情

【题目】如图,正方形O′A′B′C′的边长为1cm,它是水平放置的一个平面图形的直观图,则原图的周长是(

A.8cm
B.6cm
C.2(1+ )cm
D.2(1+ )cm

【答案】A
【解析】解:由斜二测画法的规则知与x'轴平行的线段其长度不变以及与横轴平行的性质不变,正方形的对角线在y'轴上,
可求得其长度为 ,故在平面图中其在y轴上,
且其长度变为原来的2倍,长度为2 ,其原来的图形如图所示,
则原图形中的平行四边形中,一边长为1,另一边长为3,它的周长是8
观察四个选项,A选项符合题意.
故选A.

【考点精析】解答此题的关键在于理解空间几何体的直观图的相关知识,掌握立体图形的直观图要严格按照斜二测画法,在直观图中,原来与轴平行的线段仍然与轴平行,角的大小一般都会改变.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若不等式(m﹣1)x2+(m﹣1)x+2>0的解集是R,则m的范围是(
A.(1,9)
B.(﹣∞,1]∪(9,+∞)
C.[1,9)
D.(﹣∞,1)∪(9,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)为定义在[﹣1,1]上的奇函数,当x∈[﹣1,0]时,函数解析式为
(Ⅰ)求f(x)在[0,1]上的解析式;
(Ⅱ)求f(x)在[0,1]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在海岸线一侧处有一个美丽的小岛,某旅游公司为方便游客,在上设立了两个报名点,满足中任意两点间的距离为.公司拟按以下思路运作:先将两处游客分别乘车集中到之间的中转点(异于两点),然后乘同一艘轮游轮前往岛.据统计,每批游客处需发车2辆, 处需发车4辆,每辆汽车每千米耗费元,游轮每千米耗费元.(其中是正常数)设,每批游客从各自报名点到岛所需运输成本为元.

(1) 写出关于的函数表达式,并指出的取值范围;

(2) 问:中转点距离处多远时, 最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四组函数中表示同一个函数的是(
A.f(x)=|x|与
B.f(x)=x0与g(x)=1
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2 sin(x+ )cos(x+ )+sin2x+a的最大值为1.
(1)求函数f(x)的单调递增区间;
(2)将f(x)的图象向左平移 个单位,得到函数g(x)的图象,若方程g(x)=m在x∈[0, ]上有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)当时,求函数在点处的切线方程;

(2)讨论函数的单调性;

(3)当时,求证:对任意,都有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=x2+bx+c且f(0)=f(2),则(
A.f(﹣2)<f(0)<f(
B.f( )<f(0)<f(﹣2)??
C.f( )<f(﹣2)<f(0)
D.f(0)<f( )<f(﹣2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,在区间(0,+∞)上是增函数的是(
A.f(x)=
B.f(x)=log2x
C.f(x)=( x
D.f(x)=﹣x2+2

查看答案和解析>>

同步练习册答案