| A. | 8 | B. | 6$\sqrt{3}$ | C. | 4$\sqrt{3}$ | D. | 9$\sqrt{3}$ |
分析 设双曲线的方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0),求出渐近线方程,由题意可得c=5,即a2+b2=25,且$\frac{b}{a}$=$\frac{3}{4}$,解得a=4,b=3,可得双曲线的方程,运用双曲线的定义和三角形的余弦定理,可得|AF1|•|AF2|=4b2=36,再由△F1AF2的面积S=$\frac{1}{2}$|AF1|•|AF2|sin∠F1AF2,计算即可得到所求值.
解答 解:设双曲线的方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0),
可得渐近线方程为y=±$\frac{b}{a}$x,
由题意可得c=5,即a2+b2=25,且$\frac{b}{a}$=$\frac{3}{4}$,
解得a=4,b=3,
即双曲线的方程为$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1,
又|AF1|-|AF2|=2a=8,|F1F2|=2c=10,∠F1AF2=60°,
在△F1AF2中,由余弦定理得:
|F1F2|2=|AF1|2+|AF2|2-2|AF1|•|AF2|cos∠F1AF2
=(|AF1|-|AF2|)2+|AF1|•|AF2|,
即4c2=4a2+|AF1|•|AF2|,
可得|AF1|•|AF2|=4b2=36,
则△F1AF2的面积S=$\frac{1}{2}$|AF1|•|AF2|sin∠F1AF2=$\frac{1}{2}$×36×$\frac{\sqrt{3}}{2}$=9$\sqrt{3}$.
故选:D.
点评 本题考查双曲线的定义、方程和简单性质,着重考查双曲线的定义与a、b、c之间的关系式的应用,考查三角形的面积公式,考查转化思想与运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | 2 | C. | $\frac{2}{3}$ | D. | $-\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 等级 | 优秀 | 合格 | 不合格 |
| 男生(人) | 15 | x | 5 |
| 女生(人) | 15 | 3 | y |
| 男生 | 女生 | 总计 | |
| 优秀 | |||
| 非优秀 | |||
| 总计 |
| P(K2>k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com