精英家教网 > 高中数学 > 题目详情
12.135(8)=1011101(2)

分析 先把“8进制”数转化为“十进制”数,再利用“除2取余法”把:“十进制”数化为“2进制”数.

解答 解:135(8)=1×82+3×81+5×80=93(10)
利用“除2取余法”可得:
93(10)=1011101(2)
故答案为:1011101.

点评 本题考查了利用“除2取余法”把:“十进制”数化为“2进制”数、不同“进位制”之间的转化方法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.5(x-3)2<2的解集是{x|$3-\frac{\sqrt{10}}{5}$<x<3+$\frac{\sqrt{10}}{5}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若θ∈($\frac{3π}{4}$,π),则下列各式错误的是④,并注明原因.
①sinθ+cosθ<0;
②sinθ-cosθ>0; 
③|sinθ|<|cosθ|; 
④sinθ+cosθ>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若方程log2x+2x-a=0在区间[1,2]内有解,则实数a的取值范围是(  )
A.[2,3]B.[2,4]C.[2,5]D.[2,6]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设k>0,函数f(x)=$\frac{1}{2}{x^2}$+x+kln|x-1|.
(1)讨论函数f(x)的单调性;
(2)当函数f(x)有两个极值点,且0<θ<π时,证明:(2k-1)sinθ+(1-k)sin[(1-k)θ]>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=$\left\{{\begin{array}{l}{{x^2}+1,x≥0}\\{-2x,x<0}\end{array}}$,
(1)求f(0)和f[f(0)]的值;
(2)若f(x0)=10,求出x0所有可能取的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知集合A=$\{a|\frac{x+a}{{{x^2}-1}}=1有唯一实数解\}$,则集合A={-$\frac{5}{4}$,-1,1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.计算lg$\frac{5}{2}$+2lg2-($\frac{1}{2}$)-1=(  )
A.2B.1C.0D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知实数x,y,z满足x+y+z=0,x2+y2+z2=1,则x的最大值为$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

同步练习册答案