【题目】如图,椭圆
的左右焦点
、
恰好是等轴双曲线
的左右顶点,且椭圆的离心率为
,
是双曲线
上异于顶点的任意一点,直线
和
与椭圆的交点分别记为
、
和
、
.
![]()
(1)求椭圆
的方程;
(2)设直线
、
的斜率分别为
、
,求证:
为定值;
(3)若存在点
满足
,试求
的大小.
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右两个焦点分别为
,离心率
,短轴长为2.
(1)求椭圆的方程;
(2)点
为椭圆上的一动点(非长轴端点),
的延长线与椭圆交于
点,
的延长线与椭圆交于
点,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系
的极坐标方程为
,直线l的参数方程为
,(其中
为参数)直线l与
交于A,B两个不同的点.
求倾斜角
的取值范围;
求线段AB中点P的轨迹的参数方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥
中,已知
都是边长为
的等边三角形,
为
中点,且
平面
,
为线段
上一动点,记
.
![]()
(1)当
时,求异面直线
与
所成角的余弦值;
(2)当
与平面
所成角的正弦值为
时,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】制订投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大盈利分别为
和
,可能的最大亏损率分别为
和
.投资人计划投资金额不超过
亿元,要求确保可能的资金亏损不超过
亿元,问投资人对甲、乙两个项目各投资多少亿元,才能使可能的盈利最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
的上顶点为A,右顶点为B.已知
(O为原点).
(1)求椭圆的离心率;
(2)设点
,直线
与椭圆交于两个不同点M,N,直线AM与x轴交于点E,直线AN与x轴交于点F,若
.求证:直线l经过定点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com