【题目】已知函数 ( )
(1)求函数 的单调增区间;
(2)若函数 在 上的最小值为 ,求 的值.
【答案】
(1)解:由题意, 的定义域为 ,且 .
当 时, ,∴ 的单调增区间为 .
当 时,令 ,得 ,∴ 的单调增区间为 .
(2)解:由(1)可知, .
若 ,则 ,即 在 上恒成立, 在 上为增函数,
∴ ,∴ (舍去).
若 ,则 ,即 在 上恒成立, 在 上为减函数,
∴ ,∴ (舍去).
若 ,当 时, ,∴ 在 上为减函数,
当 时, ,所以 上为增函数,
∴ ,∴
综上所述, .
【解析】(1)先求函数f(x)的定义域,再求f(x),对参数a进行分类讨论,由f(x)0得到函数f(x)的单调增区间;(2)由(1)可知f(x),对参数a进行分类讨论,由f(x)0(f(x)0)得到函数f(x)的单调增(减)区间,确定函数f(x)的最小值,从而得到参数a的值.
【考点精析】利用利用导数研究函数的单调性和函数的最大(小)值与导数对题目进行判断即可得到答案,需要熟知一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数在上的最大值与最小值的步骤:(1)求函数在内的极值;(2)将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值.
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,设椭圆 =1(a>b>0)的左、右焦点分别为F1 , F2 , 右顶点为A,上顶点为B,离心率为e.椭圆上一点C满足:C在x轴上方,且CF1⊥x轴.
(1)若OC∥AB,求e的值;
(2)连结CF2并延长交椭圆于另一点D若 ≤e≤ ,求 的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,设椭圆 =1(a>b>0)的左、右焦点分别为F1 , F2 , 右顶点为A,上顶点为B,离心率为e.椭圆上一点C满足:C在x轴上方,且CF1⊥x轴.
(1)若OC∥AB,求e的值;
(2)连结CF2并延长交椭圆于另一点D若 ≤e≤ ,求 的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】美索不达米亚平原是人类文明的发祥地之一.美索不达米亚人善于计算,他们创造了优良的计数系统,其中开平方算法是最具有代表性的.程序框图如图所示,若输入a,n,ξ的值分别为8,2,0.5,(每次运算都精确到小数点后两位)则输出结果为( )
A.2.81
B.2.82
C.2.83
D.2.84
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知半径为1的球O内切于正四面体A﹣BCD,线段MN是球O的一条动直径(M,N是直径的两端点),点P是正四面体A﹣BCD的表面上的一个动点,则 的取值范围是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两位学生参加数学竞赛培训,在培训期间他们参加的5次预寒成绩记录如下:
甲:82,82,79,95,87
乙:95,75,80,90,85
(1)用茎叶图表示这两组数据;
(2)求甲、乙两人成绩的平均数与方差;
(3)若现要从中选派一人参加数学竞赛,你认为选派哪位学生参加合适,说明理由?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn,且满足Sn+n=2an(n∈N*).
(1)证明:数列{an+1}为等比数列,并求数列{an}的通项公式;
(2)若bn=an+2n+1,数列{bn}的前n项和为Tn..
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以原点为极点, 轴正半轴为极轴建立极坐标系,并在两坐标系中取相同的长度单位.已知曲线 的极坐标方程为 ,直线 的参数方程为
( 为参数, 为直线的倾斜角).
(1)写出直线 的普通方程和曲线 的直角坐标方程;
(2)若直线 与曲线 有唯一的公共点,求角 的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com