精英家教网 > 高中数学 > 题目详情
3.已知函数$f(x)=\;{sin^2}\frac{x}{2}+\frac{{\sqrt{3}}}{2}sinx-\frac{1}{2}$.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)求函数f(x)的单调递增区间.

分析 (Ⅰ)利用三角函数恒等变换的应用化简函数解析式可得f(x)=sin(x-$\frac{π}{6}$),利用三角函数周期公式即可得解.
(Ⅱ)由(Ⅰ)知f(x)=sin(x-$\frac{π}{6}$),当2kπ-$\frac{π}{2}$≤x-$\frac{π}{6}$≤2kπ+$\frac{π}{2}$时f(x)递增,由2k$π-\frac{π}{3}$≤x≤2kπ+$\frac{2π}{3}$,k∈Z,即可解得函数f(x)的递增区间.

解答 (本小题满分13分)
解:(Ⅰ)∵由已知$f(x)=\;{sin^2}\frac{x}{2}+\frac{{\sqrt{3}}}{2}sinx-\frac{1}{2}$=$\frac{1-cosx}{2}$+$\frac{\sqrt{3}}{2}$sinx-$\frac{1}{2}$,(3分)
=$\frac{\sqrt{3}}{2}$sinx-$\frac{1}{2}$cosx=sin(x-$\frac{π}{6}$),(6分)
∴f(x)的最小正周期为2π.(7分)
(Ⅱ)∵由(Ⅰ)知f(x)=sin(x-$\frac{π}{6}$),当2kπ-$\frac{π}{2}$≤x-$\frac{π}{6}$≤2kπ+$\frac{π}{2}$时f(x)递增,(10分)
即2k$π-\frac{π}{3}$≤x≤2kπ+$\frac{2π}{3}$,k∈Z. 
∴函数f(x)的递增区间为:[2k$π-\frac{π}{3}$,2kπ+$\frac{2π}{3}$],k∈Z.(13分)

点评 本题主要考查了三角函数恒等变换的应用,三角函数周期公式,正弦函数的图象和性质的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=|x+a|+|2x-$\frac{1}{a}$|(x∈R,实数a>0).
(1)若f(0)>$\frac{5}{2}$,求实数a的取值范围;
(2)求证:f(x)≥$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知实数a,b满足$\left\{{\begin{array}{l}{0<a<2}\\{0<b<2}\end{array}}\right.$,则方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$表示焦点在x轴上且离心率小于$\frac{{\sqrt{3}}}{2}$的椭圆的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设Sn是正数组成的数列{an}的前n项和,且$\frac{4{S}_{n}}{{a}_{n}}$=an+2(n∈N*),又数列{bn}是a1为首项,公比为a2-a1的等比数列.
(1)求数列{an},{bn}的通项公式;
(2)记cn=an+$\frac{24}{{b}_{n}}$,求数列{cn}的最小项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设A、B为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上两点,C为椭圆短轴的一个端点,F为椭圆的右焦点,已知点F是△ABC的重心.
(1)求椭圆离心率的取值范围;
(2)试推断△ABC能否为以AB为底边的等腰三角形?若能求出a,b应满足的关系;若不能请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={x|1≤x≤4,x∈N},B={y|y=x2,x∈A},则A∩B=(  )
A.{1,4}B.{2,3}C.{9,16}D.{1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\frac{x}{x+1}$+2x-mln(x+1)在(-1,+∞)上是增函数,则实数m的取值范围为(  )
A.(-∞,2$\sqrt{2}$]B.(-∞,2$\sqrt{2}$)C.(-∞,3)D.(-∞,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知直线a,b,平面α,则以下三个命题:
①若a∥b,b?α,则a∥α;
②若a∥b,b∥α,则a∥α;
③a∥α,b∥α,则a∥b;
其中真命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.化简:
(1)3$\sqrt{15}$sinx+3$\sqrt{5}$cosx;
(2)$\frac{3}{2}$cosx-$\frac{\sqrt{3}}{2}$sinx;
(3)$\sqrt{3}$sin$\frac{x}{2}$+cos$\frac{x}{2}$;
(4)$\frac{\sqrt{2}}{4}$sin($\frac{π}{4}$-x)+$\frac{\sqrt{6}}{4}$cos($\frac{π}{4}$-x);
(5)sin347°cos148°+sin77°cos58°;
(6)sin164°sin224°+sin254°sin314°;
(7)sin(α+β)cos(γ-β)-cos(β+α)cos(β-γ);
(8)sin(α-β)sin(β-γ)-cos(α-β)cos(γ-β);
(9)$\frac{tan\frac{5π}{4}+tan\frac{5π}{12}}{1-tan\frac{5π}{12}}$;
(10)$\frac{sin(α+β)-2sinαcosβ}{2sinαsinβ+cos(α+β)}$.

查看答案和解析>>

同步练习册答案