精英家教网 > 高中数学 > 题目详情
8.如图,在平面四边形ABCD中,AD=1,CD=2,AC=$\sqrt{7}$,则cos∠CAD=$\frac{2\sqrt{7}}{7}$;又若cos∠BAD=-$\frac{\sqrt{7}}{14}$,sin∠CBA=$\frac{\sqrt{21}}{6}$,则BC=3.

分析 由题意在△ADC中应用余弦定理易得cos∠CAD,进而由同角三角函数基本关系可得sin∠CAD和sin∠BAD,再由和差角公式可得sin∠CAB,在△ABC中由正弦定理可得BC=$\frac{AC•sin∠CAB}{sin∠CBA}$,代值计算可得.

解答 解:由题意在△ADC中,AD=1,CD=2,AC=$\sqrt{7}$,
∴由余弦定理可得cos∠CAD=$\frac{A{D}^{2}+A{C}^{2}-C{D}^{2}}{2×AD×AC}$=$\frac{2\sqrt{7}}{7}$,
∴sin∠CAD=$\sqrt{1-co{s}^{2}∠CAD}$=$\frac{\sqrt{21}}{7}$,
同理由cos∠BAD=-$\frac{\sqrt{7}}{14}$可得sin∠BAD=$\frac{3\sqrt{21}}{14}$,
∴sin∠CAB=sin(∠BAD-∠CAD)
=sin∠BADcos∠CAD-cos∠BADsin∠CAD
=$\frac{3\sqrt{21}}{14}$×$\frac{2\sqrt{7}}{7}$+$\frac{\sqrt{7}}{14}$×$\frac{\sqrt{21}}{7}$=$\frac{\sqrt{3}}{2}$
在△ABC中由正弦定理可得BC=$\frac{AC•sin∠CAB}{sin∠CBA}$=$\frac{\sqrt{7}×\frac{\sqrt{3}}{2}}{\frac{\sqrt{21}}{6}}$=3
故答案为:$\frac{2\sqrt{7}}{7}$;3

点评 本题考查三角形中的几何运算,涉及正余弦定理的综合应用,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.双曲线2x2+ky2=k(k≠0)的一条渐近线是y=x,则实数k的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某设备的使用年限x(单位:年)与所支付的维修费用y(单位:千元)的一组数据如表:
使用年限x2345
维修费用y23.456.6
从散点图分析.y与x线性相关,根据上表中数据可得其线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中的$\widehat{b}$=1.54.由此预测该设备的使用年限为6年时需支付的维修费用约是(  )
A.7.2千元B.7.8千元C.8.1千元D.9.5千元

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设数列{an}的前n项和是Sn,且满足a1=$\frac{1}{2}$,Sn=n2an,n∈N*
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)若对任意的n∈N*,不等式2nk+7≥$\frac{1}{1-{S}_{n}}$恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.边长为2的正方形ABCD,对角线的交点为E,则$(\overrightarrow{AB}+\overrightarrow{AD})•\overrightarrow{AE}$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知正实数a,x,y,满足a≠1且ax•a4y=a,则x•y的最大值为$\frac{1}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.执行如图的程序框图,若输出的n=5,则输入整数p的最大值是(  )
A.47B.48C.49D.50

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.定义在R上的函数f(x)满足f(x+2)=f(x)+1,且x∈[0,1]时,f(x)=4x,x∈(1,2)时,f(x)=$\frac{f(1)}{x}$,令g(x)=2f(x)-x-4,x∈[-6,2],则函数g(x)的零点个数为(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.从某班的科技创新比赛结果中任抽取9名学生的成绩,其分布如茎叶图所示:
(1)求这9名学生的成绩的样本平均数$\overline{x}$和样本方差s2(结果取整数);
(2)从该9个学生的成绩高于70的成绩中,任抽取2名学生成绩,求这2名学生的成绩分别分布于[70,80),[90,100)的概率.

查看答案和解析>>

同步练习册答案