精英家教网 > 高中数学 > 题目详情
已知点P1(0,0),P2(1,1),P3(0,
1
3
)
,则在3x+2y-1≤0表示的平面区域内的点是(  )
A、P1,P2
B、P1,P3
C、P2,P3
D、P2
考点:二元一次不等式(组)与平面区域
专题:试验法
分析:分别验证三个点是否满足不等式即可,若满足则在不等式表示的区域内,反之不在不等式表示的区域内
解答: 解:把点P1(0,0)代入3x+2y-1≤0,得0+0-1≤0,显然成立∴点P1在不等式表示的区域内
把点P2(1,1)代入3x+2y-1≤0,得3+2-1≤0,不成立∴点P2不在不等式表示的区域内
把点P3(0,
1
3
)代入3x+2y-1≤0,得0+
1
3
-1≤0
,显然成立∴点P3在不等式表示的区域内
故选B
点评:本题考查点与二元一次不等式表示区域的位置关系,当点的坐标满足不等式时,点在区域内.属简单题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(cos
3
2
x,sin
3
2
x),
b
=(cos
x
2
,sin
x
2
),且x∈[-
π
6
π
3
]

(1)求
a
b
及|
a
+
b
|

(2)若f(x)=
a
b
-|
a
+
b
|,求f(x)
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α,β都是锐角,cos2α=-
7
25
,cos(α+β)=
5
13
,则sinβ=(  )
A、
16
65
B、
13
65
C、
56
65
D、
33
65

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}各项为正数,前n项和Sn=
1
2
an(an+1)

(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1=1,bn+1=bn+3an,求数列{bn}的通项公式;
(3)在(2)的条件下,令cn=
an
1+2bn
,数列{cn}前n项和为Tn,求证:Tn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

ξ~N(1,0.04)P(ξ>1)=(  )
A、0.2B、0.3
C、0.4D、0.5

查看答案和解析>>

科目:高中数学 来源: 题型:

直角坐标平面内,过点P(2,1)且与圆x2+y2=4相切的直线(  )
A、有两条B、有且仅有一条
C、不存在D、不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x(
1
2x-a
+
1
2
)
定义域为(-∞,1)∪(1,+∞),则满足不等式ax≥f(a)的实数x的集合为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)数列{an}中,a1=
1
2
an+1=sin(
π
2
+an)
,n∈N*
求证:(1)0<an<1;
(2)an<an+1
(3)1-an
π
4
(1-an-1)
.(n≥2)
(参考公式:sinα+sinβ=2sin
α+β
2
cos
α-β
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:2f(x)=
3
(sinx+cosx)2+2cos2x-(1+
3
),(x∈R)

(1)请说明函数y=f(x)的图象可由函数y=sin2x的图象经过怎样的变换得到;
(2)设函数y=f(x)图象位于y轴右侧的对称中心从左到右依次为A1、A2、A3、A4、…、An…、(n∈N*),试求A4的坐标.

查看答案和解析>>

同步练习册答案