精英家教网 > 高中数学 > 题目详情

(本小题12分)已知如图,圆和抛物线,圆的切线与抛物线交于不同的点.

(1)当直线的斜率为时,求线段的长;

(2)设点和点关于直线对称,问是否存在圆的切线使得?若存在,求出直线的方程;若不存在,请说明理由.

(1);(2)存在,.

【解析】

试题分析:(1)圆的圆心坐标为,半径,设,设的方程,利用直线是圆的切线,求得的值,从而可得直线的方程,与抛物线方程联立,利用韦达定理,即可计算弦长

(2)利用直线是圆的切线,可得满足的一个方程,将直线的方程与抛物线方程联立,利用,可得满足的另一个方程,联立方程组可求得的值,从而得到满足题设的直线.

试题解析:∵圆,∴圆心坐标为,半径,(1)当直线的斜率为时,设的方程为,即,∵直线是圆的切线,∴,解得(舍),此时直线的方程为,由,消去,∴,设,则,得,∴弦长

(2)∵直线是圆的切线,∴,得①,由,消去,∴,即,且,∵点和点关于直线对称,∴点,∴,∵,∴

,即②,①+②,得

解得,当时,代入①解得,满足条件,当时,代入①得,无解,综上所述,存在满足条件的直线,其方程为.

考点:1.直线与抛物线的位置关系;2.弦长的计算;3.韦达定理的运用.

考点分析: 考点1:抛物线的标准方程 考点2:抛物线的几何性质 试题属性
  • 题型:
  • 难度:
  • 考核:
  • 年级:
练习册系列答案
相关习题

科目:高中数学 来源:2014-2015学年江苏省苏州市高三上学期期末考试文科数学试卷(解析版) 题型:解答题

已知数列.

(1)是否存在实数,使数列是等比数列?若存在,求的值;若不存在,请说明理由;

(2)若是数列的前项和,求满足的所有正整数.

查看答案和解析>>

科目:高中数学 来源:2014-2015学年江苏省常州市高三上学期期末调研测试理科数学试卷(解析版) 题型:解答题

(本小题满分10分)一位网民在网上光顾某淘宝小店,经过一番浏览后,对该店铺中的五种商品有购买意向.已知该网民购买两种商品的概率均为,购买两种商品的概率均为,购买种商品的概率为.假设该网民是否购买这五种商品相互独立.

(1)求该网民至少购买4种商品的概率;

(2)用随机变量表示该网民购买商品的种数,求的概率分布和数学期望.

查看答案和解析>>

科目:高中数学 来源:2014-2015学年江苏省常州市高三上学期期末调研测试理科数学试卷(解析版) 题型:填空题

若实数满足约束条件则目标函数的最小值为 .

查看答案和解析>>

科目:高中数学 来源:2014-2015学年江苏省常州市高三上学期期末调研测试理科数学试卷(解析版) 题型:填空题

设集合,则= .

查看答案和解析>>

科目:高中数学 来源:2014-2015学年贵州省贵阳市高三上学期期末监测考试文科数学试卷(解析版) 题型:填空题

题文已知全集,集合是集合的恰有两个元素的子集,且满足下列三个条件:①若,则;②若,则;③若,则,则集合__________.(用列举法表示)

查看答案和解析>>

科目:高中数学 来源:2014-2015学年贵州省贵阳市高三上学期期末监测考试文科数学试卷(解析版) 题型:选择题

是两条不同直线,是两个不同的平面,下列命题正确是是( )

A.,且,则

B.,且,则

C., 则

D.,则

查看答案和解析>>

科目:高中数学 来源:2014-2015学年贵州省贵阳市高三上学期期末监测考试理科数学试卷(解析版) 题型:填空题

题文已知全集,集合是集合的恰有两个元素的子集,且满足下列三个条件:①若,则;②若,则;③若,则,则集合__________.(用列举法表示)

查看答案和解析>>

科目:高中数学 来源:2014-2015学年福建省龙岩市非一级达标校高三上学期期末检查理科数学试卷(解析版) 题型:解答题

(本小题满分13分)如图,在四棱锥中,侧棱底面是棱中点.

(1)求证:平面

(2)设点是线段上一动点,且,当直线与平面所成的角最大时,求的值.

查看答案和解析>>

同步练习册答案