分析 (1)由an+1=2an+1,变形为an+1+1=2(an+1利用等比数列的通项公式即可得出.
(2)bn=$\frac{{a}_{n}+1}{{a}_{n}•{a}_{n+1}}$=$\frac{{2}^{n}}{({2}^{n}-1)({2}^{n+1}-1)}$=$\frac{1}{{2}^{n}-1}$-$\frac{1}{{2}^{n+1}-1}$,利用“裂项求和”方法即可得出.
解答 解:(1)∵an+1=2an+1,变形为an+1+1=2(an+1),∴数列{an+1}是等比数列,首项为2,公比为2.
∴an+1=2n,∴an=2n-1.
(2)bn=$\frac{{a}_{n}+1}{{a}_{n}•{a}_{n+1}}$=$\frac{{2}^{n}}{({2}^{n}-1)({2}^{n+1}-1)}$=$\frac{1}{{2}^{n}-1}$-$\frac{1}{{2}^{n+1}-1}$,
∴{bn}的前n项和Tn=$(\frac{1}{{2}^{1}-1}-\frac{1}{{2}^{2}-1})$+$(\frac{1}{{2}^{2}-1}-\frac{1}{{2}^{3}-1})$+…+$(\frac{1}{{2}^{n}-1}-\frac{1}{{2}^{n+1}-1})$
=1-$\frac{1}{{2}^{n+1}-1}$.
点评 本题考查了递推关系、等比数列的通项公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 性别 是否喜欢篮球 | 男生 | 女生 |
| 是 | 35 | 12 |
| 否 | 25 | 28 |
| P(K2≥k0) | 0.10 | 0.050 | 0.010 | 0.005 |
| k0 | 2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com