精英家教网 > 高中数学 > 题目详情
8.四面体ABCD中,AB、AC、AD两两垂直,且AB=1,AC=2,AD=4,则点A到平面BCD的距离是$\frac{4\sqrt{21}}{21}$.

分析 在△BCD中,利用余弦定理可得cos∠BCD,进而得到sin∠BCD,S△BCD.设点A到平面BCD的距离是h,利用VA-BCD=VD-ABC,即可得出.

解答 解:如图所示,
∵AB、AC、AD两两垂直,
∴在Rt△BAD中,BD=$\sqrt{{1}^{2}+{4}^{2}}$=$\sqrt{17}$,同理可得BC=$\sqrt{5}$,CD=2$\sqrt{5}$.
在△BCD中,cos∠BCD=$\frac{(\sqrt{5})^{2}+(2\sqrt{5})^{2}-(\sqrt{17})^{2}}{2×\sqrt{5}×2\sqrt{5}}$=$\frac{2}{5}$.
∴sin∠BCD=$\sqrt{1-(\frac{2}{5})^{2}}$=$\frac{\sqrt{21}}{5}$.
∴S△BCD=$\frac{1}{2}×\sqrt{5}×2\sqrt{5}×\frac{\sqrt{21}}{5}$=$\sqrt{21}$.
设点A到平面BCD的距离是h,
则VA-BCD=VD-ABC
∴$\frac{1}{3}×h×{S}_{△BCD}$=$\frac{1}{3}×AD×$S△ABC
∴h=$\frac{4×\frac{1}{2}×1×2}{\sqrt{21}}$=$\frac{4\sqrt{21}}{21}$.
故答案为:$\frac{4\sqrt{21}}{21}$.

点评 本题考查了三棱锥的体积计算公式、线面垂直的性质、勾股定理、余弦定理、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知圆C经过三点O(0,0),M1(1,1),M2(4,2).
(1)求圆C的方程;
(2)设直线x-y+m=0与圆C交于不同的两点A,B,且线段AB的中点在圆x2+y2=5上,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知等差数列{an}的第1项是5.6,第6项是20.6.求它的第4项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=lnx-x+1的零点个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在极坐标系中,求曲线ρ=2-sinθ-cosθ上一点到极点距离的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xOy中,曲线C1的参数方程为C1:$\left\{\begin{array}{l}x=1+cosα\\ y=sinα\end{array}\right.(α$为参数),曲线C2:$\frac{x^2}{2}+{y^2}$=1.
(Ⅰ)在以O为极点,x轴的正半轴为极轴的极坐标系中,求C1,C2的极坐标方程;
(Ⅱ)射线θ=$\frac{π}{6}$(ρ≥0)与C1的异于极点的交点为A,与C2的交点为B,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在数列{an}中,a1=1,且an+1=2an+1
(1)求{an}的通项公式;
(2)设bn=$\frac{{a}_{n}+1}{{a}_{n}•{a}_{n+1}}$,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若a1=3,3an=an-1,(n≥2),则an=($\frac{1}{3}$)n-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若关于x的方程(4x+$\frac{5}{x}$)-|5x-$\frac{4}{x}$|=m在(0,+∞)内恰有三个相异实根,则实数m的取值范围为(6,$\frac{41}{10}\sqrt{5}$).

查看答案和解析>>

同步练习册答案