精英家教网 > 高中数学 > 题目详情
8.若关于x的方程(4x+$\frac{5}{x}$)-|5x-$\frac{4}{x}$|=m在(0,+∞)内恰有三个相异实根,则实数m的取值范围为(6,$\frac{41}{10}\sqrt{5}$).

分析 分类讨论以去掉绝对值号,从而利用基本不等式确定各自方程的根的个数,从而解得.

解答 解:当x≥$\frac{2\sqrt{5}}{5}$时,5x-$\frac{4}{x}$≥0,
∵方程(4x+$\frac{5}{x}$)-|5x-$\frac{4}{x}$|=m,
∴(4x+$\frac{5}{x}$)-(5x-$\frac{4}{x}$)=m,即-x+$\frac{9}{x}$=m;
∴m≤$\frac{41}{10}\sqrt{5}$.
当0<x<$\frac{2\sqrt{5}}{5}$时,5x-$\frac{4}{x}$<0,
∵方程(4x+$\frac{5}{x}$)-|5x-$\frac{4}{x}$|=m,
∴(4x+$\frac{5}{x}$)+(5x-$\frac{4}{x}$)=m,
即9x+$\frac{1}{x}$=m;
∵9x+$\frac{1}{x}$≥6;
∴当m<6时,方程9x+$\frac{1}{x}$=m无解;
当m=6时,方程9x+$\frac{1}{x}$=m有且只有一个解;
当6<m<10时,方程9x+$\frac{1}{x}$=m在(0,1)上有两个解;
当m=10时,方程9x+$\frac{1}{x}$=m的解为1,$\frac{1}{9}$;
综上所述,实数m的取值范围为(6,$\frac{41}{10}\sqrt{5}$).
故答案为:(6,$\frac{41}{10}\sqrt{5}$).

点评 本题考查了绝对值方程的解法与应用,同时考查了基本不等式的应用及转化思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.四面体ABCD中,AB、AC、AD两两垂直,且AB=1,AC=2,AD=4,则点A到平面BCD的距离是$\frac{4\sqrt{21}}{21}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知f(x)=$\left\{\begin{array}{l}{-\frac{2}{x},0<x≤1}\\{x+2,-4≤x≤0}\end{array}\right.$,则f(0)=2,f($\frac{1}{2}$)=-4,f[f($\frac{1}{2}$)]=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,AB是圆O的直径,点C在圆O上,延长BC到D使BC=CD,过C作圆O的切线交AD于E.若AB=6,ED=2,则BC=(  )
A.$\sqrt{3}$B.$2\sqrt{3}$C.$\frac{{\sqrt{3}}}{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=xlnx-ax2是减函数.
(Ⅰ)求a的取值范围;
(Ⅱ)证明:对任意n∈N,n>1,都有$\frac{1}{2ln2}$+$\frac{1}{3ln3}$+…+$\frac{1}{nlnn}$>$\frac{3{n}^{2}-n-2}{2n(n+1)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在平面直角坐标系中,直线l的参数方程为$\left\{{\begin{array}{l}{x=1+t}\\{y=t-3}\end{array}}\right.$(t为参数),在以直角坐标系的原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为$ρ=\frac{2cosθ}{{{{sin}^2}θ}}$.
(1)求曲线C的直角坐标方程和直线l的普通方程;
(2)若直线l与曲线C相交于A、B两点,求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{ln(x-1)}{x-2}$(x>2).
(Ⅰ) 判断函数f(x)的单调性;
(Ⅱ)若存在实数a,使得f(x)<a对?x∈(2,+∞)均成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知正三棱锥P-ABC底面边长为6,底边BC在平面α内,绕BC旋转该三棱锥,若某个时刻它在平面α上的正投影是等腰直角三角形,则此三棱锥高的取值范围是(  )
A.(0,$\sqrt{6}$]B.(0,$\frac{\sqrt{6}}{2}$]∪[$\sqrt{6}$,3]C.(0,$\frac{\sqrt{6}}{2}$]D.(0,$\sqrt{6}$]∪[3,$\frac{3\sqrt{6}}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某单位用3240万元购得一块空地,计划在该地块上建造一栋至少15层的小高层、每层3000平方米的楼房.经测算,如果将楼房建为x(x≥15)层,则每平方米的平均建筑费用为840+kx(单位:元).已知盖15层每平方米的平均建筑费用为1245元.
(1)求k的值;
(2)当楼房建为多少层时,楼房每平方米的平均综合费用最少?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=$\frac{购地总费用}{建筑总面积}$)

查看答案和解析>>

同步练习册答案