分析 (1)由已知条件根据x≤1,1<x<2,x≥2三种情况分类讨论,能求出不等式f(x)≥3的解集.
(2)由不等式|a+b|+|a-b|≥af(x),得$\frac{|a+b|+|a-b|}{|a|}$≥f(x),从而得到2≥|x-1|+|x-2|,由此利用分类讨论思想能求出实数x的范围.
解答 解:(1)当x≤1时,f(x)=1-x+2-x=3-2x,
∴由f(x)≥3得3-2x≥3,解得x≤0,
即此时f(x)≥3的解为x≤0;
当1<x<2时,f(x)=x-1+2-x=1,∴f(x)≥3不成立;
当x≥2时,f(x)=x-1+x-2=2x-3,
∴由f(x)≥3得2x-3≥3,解得x≥3,即此时不等式f(x)≥3的解为x≥3,
∴综上不等式f(x)≥3的解集为{x|x≤0或x≥3}.
(2)由不等式|a+b|+|a-b|≥af(x),得$\frac{|a+b|+|a-b|}{|a|}$≥f(x),
又∵$\frac{|a+b|+|a-b|}{|a|}$≥$\frac{|a+b+a-b|}{|a|}$=2,
∴2≥f(x),即2≥|x-1|+|x-2|,
当x≥2时,2≥x-1+x-2,解得2≤x≤$\frac{5}{2}$;
当1≤x<2时,2≥x-1+2-x,即2≥1,成立;
当x<1时,2≥1-x+2-x,解得x$≥\frac{1}{2}$,即$\frac{1}{2}≤x<1$.
∴实数x的范围是[$\frac{1}{2}$,$\frac{5}{2}$].
点评 本题考查不等式的解集和实数的取值范围的求法,是中档题,解题时要认真审题,注意分类讨论思想的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | 至少有一个零点 | B. | 至多有一个零点 | C. | 可能存在2个零点 | D. | 可能存在3个零点 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x+y-$\sqrt{2}$=0 | B. | x+y+1=0 | C. | x+y-1=0 | D. | x+y+$\sqrt{2}$=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com