精英家教网 > 高中数学 > 题目详情
5.以原点为极点,x轴的非负半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ=$\sqrt{2}$,点M的极坐标为(2$\sqrt{2}$,$\frac{π}{4}$).
(1)写出曲线C的参数方程,并求曲线C在点(1,1)处的切线的极坐标方程;
(2)若点N为曲线C上的动点,求|MN|的取值范围.

分析 (1)曲线C的极坐标方程为ρ=$\sqrt{2}$,化为直角坐标方程:x2+y2=2.设曲线C在点(1,1)处的切线的方程为y=k(x-1)+1.利用圆的切线的性质、点到直线的距离公式即可得出.再化为极坐标方程即可得出.
(2)点M的极坐标为(2$\sqrt{2}$,$\frac{π}{4}$),可得|OM|=2$\sqrt{2}$.即可得出|MN|的取值范围是[|OM|-r,|OM|+r].

解答 解:(1)曲线C的极坐标方程为ρ=$\sqrt{2}$,化为直角坐标方程:x2+y2=2.
设曲线C在点(1,1)处的切线的方程为y=k(x-1)+1.
则$\frac{|1-k|}{\sqrt{1+{k}^{2}}}$=$\sqrt{2}$,化为:(k+1)2=0,解得k=-1.
∴切线方程为:x+y-2=0.
化为极坐标方程:ρcosθ+ρsinθ=2.
(2)点M的极坐标为(2$\sqrt{2}$,$\frac{π}{4}$),∵|OM|=2$\sqrt{2}$.
∴|MN|的取值范围是$[\sqrt{2},3\sqrt{2}]$.

点评 本题考查了极坐标方程化为直角坐标方程、直线与圆相切的充要条件、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.函数y=$\sqrt{-lg(1-x)}$的定义域为[0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数y=$\frac{sinθcosθ}{2+sinθ+cosθ}$.
(1)设变量t=sinθ+cosθ,试用t表示y=f(t),并写出t的范围;
(2)求函数y=f(t)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求点M(4,$\frac{π}{3}$)到直线ρcos(θ-$\frac{π}{3}$)=2上的点的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,平面ABCD⊥平面ADEF,四边形ABCD为菱形,四边形ADEF为矩形,M、N分别是EF、BC的中点,AB=2AF,∠CBA=60°.
(1)求证:DM⊥平面MNA;
(2)若三棱锥A-DMN的体积为$\frac{\sqrt{3}}{3}$,求点A到平面DMN的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,直线AB经过⊙O上一点C,⊙O的半径为3,△AOB是等腰三角形,且C是AB中点,⊙O交直线OB于E、D.
(Ⅰ)证明:直线AB与⊙O相切;
(Ⅱ)若∠CED的正切值为$\frac{1}{2}$,求OA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若定义在R上的函数f(x)满足f(-x)=f(x),f(2-x)=f(x),且当x∈[0,1]时,f(x)=$\sqrt{1-{x}^{2}}$,则函数H(x)=|xex|-f(x)在区间[-7,1]上的零点个数为(  )
A.4B.6C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=|x-1|+|x-2|
(1)解不等式f(x)≥3
(2)若不等式|a+b|+|a-b|≥af(x)(a≠0,a,b∈R)恒成立,求实数x的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某学校的篮球兴趣小组为调查该校男女学生对篮球的喜好情况,用简单随机抽样方法调查了该校100名学生,调查结果如下:
性别
是否喜欢篮球
男生女生
3512
2528
(1)该校共有500名学生,估计有多少学生喜好篮球?
(2)能否有99%的把握认为该校的学生是否喜欢篮球与性别有关?说明原因;
(3)已知在喜欢篮球的12名女生中,6名女生(分别记为P1,P2,P3,P4,P5,P6)同时喜欢乒乓球,2名女生(分别记为B1,B2)同时喜欢羽毛球,4名女生(分别记为V1,V2,V3,V4)同时喜欢排球,现从喜欢乒乓球、羽毛球、排球的女生中各取1人,求P1,B2不全被选中的概率.
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(a+c)(b+d)(c+d)}$,n=a+b+c+d.
参考数据:
P(K2≥k00.100.0500.0100.005
k02.7063.8416.6357.879

查看答案和解析>>

同步练习册答案