精英家教网 > 高中数学 > 题目详情
16.已知函数y=$\frac{sinθcosθ}{2+sinθ+cosθ}$.
(1)设变量t=sinθ+cosθ,试用t表示y=f(t),并写出t的范围;
(2)求函数y=f(t)的值域.

分析 (1)由t=$\sqrt{2}$sin(t+$\frac{π}{4}$)利用正弦函数的性质可求t的范围,平方后利用同角三角函数基本关系式可求sinθcosθ=$\frac{{t}^{2}-1}{2}$,进而即可用t表示y=f(t).
(2)由y=$\frac{{t}^{2}-1}{4+2t}$=$\frac{1}{2}$[(t+2)+$\frac{3}{t+2}$-4],利用基本不等式即可求其最小值,进而求得最大值即可得解函数y=f(t)的值域.

解答 解:(1)∵t=sinθ+cosθ,
∴t=sinθ+cosθ=$\sqrt{2}$sin(θ+$\frac{π}{4}$)∈[-$\sqrt{2}$,$\sqrt{2}$],
∴t2=sin2θ+cos2θ+2sinθcosθ=1+2sinθcosθ,
∴sinθcosθ=$\frac{{t}^{2}-1}{2}$,
∴y=$\frac{sinθcosθ}{2+sinθ+cosθ}$=$\frac{\frac{{t}^{2}-1}{2}}{2+t}$=$\frac{{t}^{2}-1}{4+2t}$,t∈[-$\sqrt{2}$,$\sqrt{2}$].
(2)∵y=$\frac{{t}^{2}-1}{4+2t}$=$\frac{1}{2}×$($\frac{{(t}^{2}-4)+3}{t+2}$)=$\frac{1}{2}$[(t+2)+$\frac{3}{t+2}$-4],
∵t∈[-$\sqrt{2}$,$\sqrt{2}$].
∴t+2∈[2-$\sqrt{2}$,2+$\sqrt{2}$].
∴(t+2)+$\frac{3}{t+2}$$≥2\sqrt{(t+2)•\frac{3}{t+2}}$=2$\sqrt{3}$,当且仅当(t+2)=$\frac{3}{t+2}$,即t+2=$\sqrt{3}$时取等号.
∵t+2∈[2-$\sqrt{2}$,2+$\sqrt{2}$].
∴函数的最小值为$\frac{1}{2}$[2$\sqrt{3}$-4]=$\sqrt{3}-2$.
当t=-$\sqrt{2}$时,f(-$\sqrt{2}$)=$\frac{2+\sqrt{2}}{4}$,
t=$\sqrt{2}$时,f($\sqrt{2}$)=$\frac{2-\sqrt{2}}{4}$,
∴函数的最大值为$\frac{2+\sqrt{2}}{4}$,
故函数y=f(t)的值域为:[$\sqrt{3}-2$,$\frac{2+\sqrt{2}}{4}$].

点评 本题主要考查了三角函数恒等变换的应用,正弦函数的图象和性质的应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在如图所示的四棱锥E-ABCD中,底面ABCD为直角梯形,AB⊥AD,CD⊥AD,且AB=AD=$\frac{1}{2}$CD=2,侧面BEC为正三角形,且平面BEC⊥平面ABCD.
(1)在CD上是否存在一点F,使得BC∥平面AEF;
(2)求直线AE与平面BEC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在正三棱ABC-A1B1C1(侧棱垂直于底面,且底面是正三角形)中,AC=CC1=6,M、N分别是CC1、AB的中点
(Ⅰ)求证:CN∥平面AB1M.
(Ⅱ)求二面角A-MB1-A1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设函数f(x)=x3+bx+c,η,ξ是方程f(x)=0的根,且f′(ξ)=0,当0<ξ-η<1时,关于函数g(x)=$\frac{1}{3}$x3-$\frac{3}{2}$x2+(b+2)x+(c-b+η)lnx+d在区间(η+1,ξ+1)内的零点个数的说法中,正确的是(  )
A.至少有一个零点B.至多有一个零点C.可能存在2个零点D.可能存在3个零点

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若关于x的不等式|2-x|+|x+a|<5有解,则实数a的取值范围是-7<a<3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知定点P(4,$\frac{π}{3}$),将极点O移至O′(2$\sqrt{3}$,$\frac{π}{6}$)处,极轴方向不变,则点P的新的极坐标为(  )
A.(4,$\frac{2π}{3}$)B.(4,$\frac{4π}{3}$)C.(2,$\frac{2π}{3}$)D.(2,$\frac{4π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.平面直角坐标系中,若点P(3,$\frac{7π}{2}$)经过伸缩变换:$\left\{\begin{array}{l}{x′=2x}\\{y′=\frac{1}{3}y}\end{array}\right.$ 后的点为Q,则极坐标系中,极坐标与Q的直角坐标相同的点到极轴所在直线的距离等于1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.以原点为极点,x轴的非负半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ=$\sqrt{2}$,点M的极坐标为(2$\sqrt{2}$,$\frac{π}{4}$).
(1)写出曲线C的参数方程,并求曲线C在点(1,1)处的切线的极坐标方程;
(2)若点N为曲线C上的动点,求|MN|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.垂直于直线y=x-1且与圆x2+y2=1相切于第三象限的直线方程为(  )
A.x+y-$\sqrt{2}$=0B.x+y+1=0C.x+y-1=0D.x+y+$\sqrt{2}$=0

查看答案和解析>>

同步练习册答案