精英家教网 > 高中数学 > 题目详情
1.已知定点P(4,$\frac{π}{3}$),将极点O移至O′(2$\sqrt{3}$,$\frac{π}{6}$)处,极轴方向不变,则点P的新的极坐标为(  )
A.(4,$\frac{2π}{3}$)B.(4,$\frac{4π}{3}$)C.(2,$\frac{2π}{3}$)D.(2,$\frac{4π}{3}$)

分析 将极点移至O′(2$\sqrt{3}$,$\frac{π}{6}$)处,利用余弦定理可得|O′P|=2.利用勾股定理的逆定理可得∠PO′O=$\frac{π}{2}$.即可得出极角∠PO′x′.

解答 解:将极点移至O′(2$\sqrt{3}$,$\frac{π}{6}$)处,
则|O′P|=$\sqrt{{4}^{2}+(2\sqrt{3})^{2}-2×4×2\sqrt{3}cos(\frac{π}{3}-\frac{π}{6})}$=2.
∵${2}^{2}+(2\sqrt{3})^{2}$=42,∴∠PO′O=$\frac{π}{2}$.
∴∠PO′x′=$\frac{π}{2}+\frac{π}{6}$=$\frac{2π}{3}$.
∴点P的新的极坐标为$(2,\frac{2π}{3})$.
故选:C.

点评 本题考查了极坐标方程的应用、余弦定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.下列结论中,正确的个数是(  )
①当a<0时,(a2)${\;}^{\frac{5}{2}}$=a5
②$\root{n}{{a}^{n}}$=|a|(n>0);
③函数y=(x-2)${\;}^{\frac{1}{2}}$-(3x-6)°的定义域是[2,+∞);
④若1000a=5,10b=2,则3a+b=1.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图所示,在直三棱柱ABC-DEF中,底面ABC的棱AB⊥BC,且AB=BC=2.点G、H在棱CF上,且GH=HG=GF=1
(1)证明:EH⊥平面ABG;
(2)求点C到平面ABG的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=4x-$\frac{2}{1+c}$x2,g(x)=$\frac{4c}{1+c}$lnx.
(1)若直线l与函数f(x),g(x)的图象均相切,且与g(x)图象切点的横坐标为e(e是自然对数的底数),求c的值.
(2)若c<1,试讨论函数f(x)-g(x)的单调性.
(3)若c>1,记f(x)-g(x)的极大值为M(c),极小值为N(c),讨论函数h(c)=M(c)-N(c)-$\frac{a}{c+1}$(a为实数)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数y=$\frac{sinθcosθ}{2+sinθ+cosθ}$.
(1)设变量t=sinθ+cosθ,试用t表示y=f(t),并写出t的范围;
(2)求函数y=f(t)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,A,B,C,D四点在同一圆上,BC与AD的延长线交于点E,点F在BA的延长线上.
(1)若$\frac{EC}{CB}$=$\frac{1}{3}$,$\frac{ED}{DA}$=1,求$\frac{DC}{AB}$的值;
(2)若EF2=FA•FB,证明:EF∥CD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求点M(4,$\frac{π}{3}$)到直线ρcos(θ-$\frac{π}{3}$)=2上的点的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,直线AB经过⊙O上一点C,⊙O的半径为3,△AOB是等腰三角形,且C是AB中点,⊙O交直线OB于E、D.
(Ⅰ)证明:直线AB与⊙O相切;
(Ⅱ)若∠CED的正切值为$\frac{1}{2}$,求OA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列四个函数中,具有性质“对任意的x>0,y>0,函数f(x)满足f(xy)=f(x)+f(y)“的是(  )
A.y=x+1B.y=log3xC.y=$(\frac{1}{3})^{x}$D.y=${x}^{\frac{1}{3}}$

查看答案和解析>>

同步练习册答案