精英家教网 > 高中数学 > 题目详情
2.下列结论中,正确的个数是(  )
①当a<0时,(a2)${\;}^{\frac{5}{2}}$=a5
②$\root{n}{{a}^{n}}$=|a|(n>0);
③函数y=(x-2)${\;}^{\frac{1}{2}}$-(3x-6)°的定义域是[2,+∞);
④若1000a=5,10b=2,则3a+b=1.
A.0B.1C.2D.3

分析 利用幂指数的运算法则以及函数的定义域,对数的运算法则判断选项即可.

解答 解:①当a<0时,(a2)${\;}^{\frac{5}{2}}$>0;a5<0,所以①不正确;
②当n是奇数时,$\root{n}{{a}^{n}}$<0,|a|>0;所以②不正确;
③函数y=(x-2)${\;}^{\frac{1}{2}}$-(3x-6)0,可得:$\left\{\begin{array}{l}{x-2≥0}\\{3x-6≠0}\end{array}\right.$,解得x>2,
函数的定义域是(2,+∞);所以③不正确;
④若1000a=5,10b=2,可得a=$\frac{1}{3}$lg5,b=lg2,
则3a+b=3×$\frac{1}{3}$lg5+lg2=lg5+lg2=1.所以④正确;
故选:B.

点评 本题考查命题的真假,幂指数的运算,对数的运算法则以及函数的定义域的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.求不等式|1-2x|<5和不等式|1-2x|>2的解集的交集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.直线l:x-ky+k-1=0与圆C:x2+y2=3的位置关系为(  )
A.l与C相交B.l与C相切
C.l与C相离D.以上三个选项都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1的左顶点为A,右顶点为B,点P是椭圆上不同于A,B的任一点,直线AP、BP分别与直线x=$\frac{{a}^{2}}{c}$交于M,N两点,F为右焦点,则∠MFN等于90°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在如图所示的四棱锥E-ABCD中,底面ABCD为直角梯形,AB⊥AD,CD⊥AD,且AB=AD=$\frac{1}{2}$CD=2,侧面BEC为正三角形,且平面BEC⊥平面ABCD.
(1)在CD上是否存在一点F,使得BC∥平面AEF;
(2)求直线AE与平面BEC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某工厂安排甲、乙、丙、丁、戊五名毕业生到A、B、C、D四个车间实习,每名毕业生只能进一个车间实习,每个车间至少要安排一名毕业生,则不安排甲同学到A车间的方案有(  )
A.36种B.120种C.144种D.180种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=lg(1-x)的值域为(-∞,0],则函数f(x)的定义域为(  )
A.[0,+∞)B.[0,1)C.[-9,+∞)D.[-9,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)短轴的一个端点与其两个焦点构成面积为3的直角三角形.
(1)求椭圆C的方程;
(2)过圆E:x2+y2=2上任意一点P作圆E的切线l,l与椭圆C交于A、B两点,以AB为直径的圆是否过定点,如过,求出该定点;不过说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知定点P(4,$\frac{π}{3}$),将极点O移至O′(2$\sqrt{3}$,$\frac{π}{6}$)处,极轴方向不变,则点P的新的极坐标为(  )
A.(4,$\frac{2π}{3}$)B.(4,$\frac{4π}{3}$)C.(2,$\frac{2π}{3}$)D.(2,$\frac{4π}{3}$)

查看答案和解析>>

同步练习册答案