精英家教网 > 高中数学 > 题目详情
20.如图,平面ABCD⊥平面ADEF,四边形ABCD为菱形,四边形ADEF为矩形,M、N分别是EF、BC的中点,AB=2AF,∠CBA=60°.
(1)求证:DM⊥平面MNA;
(2)若三棱锥A-DMN的体积为$\frac{\sqrt{3}}{3}$,求点A到平面DMN的距离.

分析 (1)证明AN⊥DM,DM⊥AM,利用线面垂直的判定定理证明:DM⊥平面MNA;
(2)利用等体积,求出点M到平面ADN的距离,作AH⊥MN交MN于点H,AH为求点A到平面DMN的距离,利用等面积求点A到平面DMN的距离.

解答 证明:(1)连接AC,在菱形ABCD中,
∵∠CBA=60°且AB=AC,
∴△ABC为等边三角形.
∵N是BC的中点,
∴AN⊥BC,AN⊥BC.
∵ABCD⊥平面ADEF,AN?平面ADEF,ABCD∩平面ADEF=AD,
∴AN⊥平面ABEF.
∵DM?平面ADEF,
∴AN⊥DM.
∵矩形ADEF中,AD=2AF,M是的中点,
∴△AMF为等腰直角三角形,
∴∠AMF=45°,
同理可证∠DME=45°,
∴∠DAM=90°,
∴DM⊥AM.
∵AM∩AN=N,AM?平面MNA,AN?平面MNA,
∴DM⊥平面MNA.
解:(2)设AF=x,则AB=2AF=2x,
在Rt△ABN中,AB=2x,BN=x,∠ABN=60°,
∴$AN=\sqrt{3}x$.

∴${S_{△ADN}}=\frac{1}{2}•2x•\sqrt{3}x=\sqrt{3}{x^2}$.
∵ABCD⊥平面ADEF,FA⊥AD,ABCD∩平面ADEF=AD,
∴FA⊥平面ABCD.
设h为点M到平面ADN的距离,则h=FA=x.
∴${V_{M-ADN}}=\frac{1}{3}{V_{△CDF}}•h=\frac{1}{3}•\sqrt{3}{x^2}•x=\frac{{\sqrt{3}}}{3}{x^3}$,
∵${V_{M-ADN}}={V_{D-AMN}}=\frac{{\sqrt{3}}}{3}$,
∴x=1.
作AH⊥MN交MN于点H.
∵DM⊥平面MNA,
∴DM⊥AH.
∴AH⊥平面DMN,
即AH为求点A到平面DMN的距离,
∵在Rt△MNA中,$MA=\sqrt{2}$,$AN=\sqrt{3}$,
∴$AH=\frac{{\sqrt{30}}}{5}$.
∴点A到平面DMN的距离为$\frac{{\sqrt{30}}}{5}$.

点评 本题主要考查了直线与平面垂直的判定与性质,以及着重考查了棱锥的体积公式,考查空间想象能力、运算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:
总计
爱好402060
不爱好203050
总计6050110
由K2=$\frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$,算得K2=$\frac{110×(40×30-20×20)^2}{60×50×60×50}$≈7.8.
附表:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
参照附表,得到的正确结论是(  )
A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”
C.在犯错误的概率不超过1%的前提下,认为“爱好该项运动与性别有关”
D.在犯错误的概率不超过1%的前提下,认为“爱好该项运动与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若关于x的不等式|2-x|+|x+a|<5有解,则实数a的取值范围是-7<a<3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.平面直角坐标系中,若点P(3,$\frac{7π}{2}$)经过伸缩变换:$\left\{\begin{array}{l}{x′=2x}\\{y′=\frac{1}{3}y}\end{array}\right.$ 后的点为Q,则极坐标系中,极坐标与Q的直角坐标相同的点到极轴所在直线的距离等于1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知极坐标方程ρcosθ+ρsinθ-1=0的直线与x轴的交点为P,与椭圆$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数)交于点A,B两点.
(1)求点P的直角坐标;
(2)求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.以原点为极点,x轴的非负半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ=$\sqrt{2}$,点M的极坐标为(2$\sqrt{2}$,$\frac{π}{4}$).
(1)写出曲线C的参数方程,并求曲线C在点(1,1)处的切线的极坐标方程;
(2)若点N为曲线C上的动点,求|MN|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在以O为顶点的三棱锥中,过O的三条棱两两相交都是30°,在一条棱上取A、B两点,OA=4cm,OB=3cm,以A、B为端点用一条绳子紧绕三棱锥的侧面一周(绳和侧面无摩擦),求此绳在A、B两点间的最短绳长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,正三棱柱ABC-A1B1C1,各棱长都是2,M是AC中点.
(1)求证:AB1∥平面MBC1
(2)求二面角M-BC1-C的正弦;
(3)求点A到平面MBC1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图在四棱锥P-ABCD中,PA⊥平面ABCD,AD∥BC,∠ABC=60°,PA=AB=AD=2,BC=4,M是PD的中点.
(1)求证:平面AMC⊥平面PAB;
(2)求二面角M-AB-C的余弦值.

查看答案和解析>>

同步练习册答案