精英家教网 > 高中数学 > 题目详情
15.已知极坐标方程ρcosθ+ρsinθ-1=0的直线与x轴的交点为P,与椭圆$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数)交于点A,B两点.
(1)求点P的直角坐标;
(2)求|PA|•|PB|的值.

分析 (1)利用x=ρcosθ,y=ρsinθ即可把极坐标方程ρcosθ+ρsinθ-1=0化为直角坐标,进而得到P.
(2)利用cos2θ+sin2θ可把椭圆参数方程化为:$\frac{{x}^{2}}{4}+{y}^{2}$=1.直线l的参数方程为:$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$,代入椭圆方程,利用|PA|•|PB|=|t1t2|,即可得出.

解答 解:(1)极坐标方程ρcosθ+ρsinθ-1=0化为直角坐标:x+y-1=0,
令y=0,可得x=1,
∴P(1,0).
(2)椭圆$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数)消去参数化为:$\frac{{x}^{2}}{4}+{y}^{2}$=1.
直线l的参数方程为:$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$,
代入椭圆方程可得:5t2-2$\sqrt{2}$t-6=0,
∴t1t2=-$\frac{6}{5}$.
∴|PA|•|PB|=|t1|•|t2|=|t1t2|=$\frac{6}{5}$.

点评 本题考查了极坐标方程化为直角坐标方程、直线与椭圆相交弦长问题、直线参数方程的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.设函数f(x)=$\left\{\begin{array}{l}1,x∈Q\\ π,x∈{∁_R}Q\end{array}$,下列结论中不正确的是(  )
A.函数值域为[1,π]B.此函数不单调C.此函数为偶函数D.方程f[f(x)]=x有两解

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=ex(x2+ax+a).
(1)当a=1时,求函数f(x)的单调区间;
(2)若关于x的不等式f(x)≤ea在[a,+∞)上有解,求实数a的取值范围;
(3)若曲线y=f(x)存在两条互相垂直的切线,求实数a的取值范围.(只需直接写出结果)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图所示,在直三棱柱ABC-A1B1C1中,BC=AC,AB=$\sqrt{2}$AA1,AC1⊥A1B,M,N分别是A1B1,AB的中点,给出下列结论:
①C1M⊥平面A1ABB,
②A1B⊥NB1
③平面AMC1⊥平面CBA1
其中正确结论的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,l1,l2,l3是同一平面内的三条平行直线,l2,l3在l1的同侧.l1与l2的距离是d,l2与l3的距离是2d,边长为1的正三角形ABC的三个顶点分别在l1,l2,l3上,则d=$\frac{{\sqrt{21}}}{14}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,平面ABCD⊥平面ADEF,四边形ABCD为菱形,四边形ADEF为矩形,M、N分别是EF、BC的中点,AB=2AF,∠CBA=60°.
(1)求证:DM⊥平面MNA;
(2)若三棱锥A-DMN的体积为$\frac{\sqrt{3}}{3}$,求点A到平面DMN的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在等式cos2x=2cos2x-1(x∈R)的两边对x求导,得(-sin2x)•2=4cosx(-sinx),化简后得等式sin2x=2cosxsinx.
(1)利用上述方法,试由等式(1+x)n=Cn0+Cn1x+…+Cnn-1xn-1+Cnnxn(x∈R,正整数n≥2),
①证明:n[(1+x)n-1-1]=$\sum_{k=2}^n$k$C_n^k$xk-1
②求C101+2C102+3C103+…+10C1010
(2)对于正整数n≥3,求 $\sum_{k=1}^n$(-1)kk(k+1)Cnk

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$\overrightarrow a$,$\overrightarrow b$均为单位向量,它们的夹角为60°,$\overrightarrow c$=λ$\overrightarrow a$+μ$\overrightarrow b$,若$\overrightarrow a$⊥$\overrightarrow c$,则下列结论正确的是(  )
A.λ-μ=0B.λ+μ=0C.2λ-μ=0D.2λ+μ=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在三棱锥P-ABC中,PC⊥底面ABC,AB⊥BC,D是PC的中点.
(1)求证:平面ABD⊥平面PBC;
(2)若PA与平面ABC所成的角为30°,AB=BC,求二面角D-AB-C的正切值.

查看答案和解析>>

同步练习册答案