| A. | λ-μ=0 | B. | λ+μ=0 | C. | 2λ-μ=0 | D. | 2λ+μ=0 |
分析 由条件可以求出${\overrightarrow{a}}^{2}=1,\overrightarrow{a}•\overrightarrow{b}=\frac{1}{2}$,而根据$\overrightarrow{a}⊥\overrightarrow{c}$便可得到$\overrightarrow{a}•\overrightarrow{c}=0$,带入$\overrightarrow{c}=λ\overrightarrow{a}+μ\overrightarrow{b}$,并进行向量数量积的运算即可得出$λ+\frac{1}{2}μ=0$,整理后即可找出正确选项.
解答 解:根据条件,$|\overrightarrow{a}|=|\overrightarrow{b}|=1$,且$<\overrightarrow{a},\overrightarrow{b}>=60°$;
又$\overrightarrow{a}⊥\overrightarrow{c}$;
∴$\overrightarrow{a}•\overrightarrow{c}=\overrightarrow{a}•(λ\overrightarrow{a}+μ\overrightarrow{b})$
=$λ{\overrightarrow{a}}^{2}+μ\overrightarrow{a}•\overrightarrow{b}$
=$λ+\frac{1}{2}μ$=0;
∴2λ+μ=0.
故选D.
点评 本题考查单位向量的概念,向量夹角的概念,向量垂直的充要条件,以及向量数量积的运算.
科目:高中数学 来源: 题型:选择题
| 男 | 女 | 总计 | |
| 爱好 | 40 | 20 | 60 |
| 不爱好 | 20 | 30 | 50 |
| 总计 | 60 | 50 | 110 |
| P(K2≥k) | 0.050 | 0.010 | 0.001 |
| k | 3.841 | 6.635 | 10.828 |
| A. | 在犯错误的概率不超过0.01的前提下认为“爱好该项运动与性别有关” | |
| B. | 在犯错误的概率不超过0.01的前提下认为“爱好该项运动与性别无关” | |
| C. | 在犯错误的概率不超过0.001的前提下,认为“爱好该项运动与性别有关” | |
| D. | 在犯错误的概率不超过0.001的前提下,认为“爱好该项运动与性别无关” |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com