精英家教网 > 高中数学 > 题目详情
某几何体的三视图如图所示,则该几何体的体积为(  )
A、26
B、42+3
5
C、62
D、42-3
5
考点:由三视图求面积、体积
专题:空间位置关系与距离
分析:由已知中的三视图可得:该几何体是一个三棱柱截去一个三棱锥所得的组合体,分别求出棱柱和棱锥的体积,相减可得答案.
解答: 解:由已知中的三视图可得:该几何体是一个三棱柱截去一个三棱锥所得的组合体,
它们的底面面积S=
1
2
×3×4=6,
棱柱的高为5,故体积为:30,
棱锥的高为5-3=2,故体积为:4,
故组合体的体积V=30-4=26,
故选:A
点评:解决三视图的题目,关键是由三视图判断出几何体的形状及度量长度,然后利用几何体的面积及体积公式解决.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2lnx-
1
2
ax2-3x,其中a为常数.
(1)若当x=1时,f(x)取得极值,求a的值,并求出f(x)的单调区间;
(2)设g(x)+xf′(x)=-3x2+ax+1,问是否存在实数a,使得当a∈(0,1]时,g(x)有最大值,若存在,求出a的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若双曲线
x2
a2
-
y2
b2
=λ(λ≠0)的一条渐近线方程是y=2x,则离心率e的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在程序框图中,若输入n=6,则输出k的值是(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=3x,且f(a+2)=18,g(x)=3ax-4x(x∈R).
(1)求g(x)的解析式;
(2)判断g(x)在[0,1]上的单调性并用定义证明;
(3)设M={m|方程g(t)-m=0在[-2,2]上有两个不同的解},求集合M.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示,求该几何体的表面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设x1,x2分别是方程xax=1和xlogax=1的根(其中a>1),则x1+2x2的取值范围(  )
A、(2
2
,+∞)
B、[2
2
,+∞)
C、(3,+∞)
D、[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-2x≥0},B={x|x<1},则A∩B=(  )
A、[-1,1)
B、(0.1)
C、[0,1)
D、(-∞,0]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B是圆O:x2+y2=1上的两个动点,P是AB线段上的动点,当△AOB的面积最大时,则
AP
2
-
AO
AP
的最小值是(  )
A、-
1
8
B、0
C、-
2
4
D、-
1
2

查看答案和解析>>

同步练习册答案